Texas A&M University, Qatar.
Bilkent University, Turkey.
Bioinspir Biomim. 2021 Aug 12;16(5). doi: 10.1088/1748-3190/ac13b1.
Legged locomotion enables robotic platforms to traverse on rough terrain, which is quite challenging for other locomotion types, such as in wheeled and tracked systems. However, this benefit-moving robustly on rough terrain-comes with an inherent drawback due to the higher cost of transport in legged robots. The ultimate need for energy efficiency motivated the utilization of passive dynamics in legged locomotion. Nevertheless, a handicap in passive dynamic walking is the fragile basin of attraction that limits the locomotion capabilities of such systems. There have been various extensions to overcome such limitations by incorporating additional actuators and active control approaches at the expense of compromising the benefits of passivity. Here, we present a novel actuation and control framework, enabling efficient and sustained bipedal locomotion on significantly rough terrain. The proposed approach reinforces the passive dynamics by intermittent active feedback control within a bio-inspired compliant ankle actuation framework. Specifically, we use once-per-step energy regulation to adjust the spring precompression of the compliant ankle based on the liftoff instants-when the toe liftoffs from the ground-of the locomotion. Our results show that the proposed approach achieves highly efficient (with a cost of transport of 0.086) sustained locomotion on rough terrain, withstanding height variations up to 15% of the leg length. We provide theoretical and numerical analysis to demonstrate the performance of our approach, including systematic comparisons with the recent and state-of-the-art techniques in the literature.
腿式运动使机器人平台能够在崎岖的地形上行驶,这对其他运动类型(如轮式和履带式系统)来说极具挑战性。然而,腿式机器人的运输成本更高,这一优势(在崎岖地形上稳健移动)带来了固有缺陷。对能源效率的最终需求促使人们在腿式运动中利用被动动力学。然而,被动动态步行的一个缺点是吸引力盆地很脆弱,限制了此类系统的运动能力。为了克服这些限制,已经提出了各种扩展方案,通过在生物启发式顺应踝关节致动框架内结合额外的执行器和主动控制方法来克服这些限制,从而牺牲了被动性的优势。在这里,我们提出了一种新的驱动和控制框架,使机器人能够在非常崎岖的地形上高效且持续地进行双足运动。所提出的方法通过在生物启发式顺应踝关节致动框架内的间歇性主动反馈控制来增强被动动力学。具体来说,我们使用每步一次的能量调节来根据运动的离地瞬间(即脚趾离地的瞬间)调整顺应踝关节的弹簧预压缩,该运动是基于运动的离地瞬间(即脚趾离地的瞬间)来调整顺应踝关节的弹簧预压缩的。我们的结果表明,所提出的方法在崎岖地形上实现了高效(运输成本为 0.086)且可持续的运动,能够承受高达腿长 15%的高度变化。我们提供了理论和数值分析来演示我们方法的性能,包括与文献中最近和最先进的技术进行系统比较。