Kim Hosan, Aquino Matthew, Izadjoo Mina
Integrated Pharma Services, Rockville, MD, US.
J Wound Care. 2021 Jul 1;30(Sup7):S36-S46. doi: 10.12968/jowc.2021.30.Sup7.S36.
To develop and evaluate a simple platform technology for developing static biofilms in a 96-well microtitre plate for various downstream applications. The technology allows monitoring of growth rate, biofilm formation and quantifying biofilm biomass by using crystal violet (CV) and safranin O (SO) staining over seven-day time periods for pathogens including clinical isolates most commonly associated with hard-to-treat wound infections.
A total of 157 bacteria including and spp. were used in the study. Bacterial growth was measured at 600nm optical density (OD). Biofilm formation was monitored and assessed quantitatively with CV at 570nm and SO staining at 492nm for one-, two-, three- and seven-day incubation periods.
Bacterial growth rate and static biofilm biomass in the 96-well plates varied for various strains tested. Both CV and SO staining showed similar results in the biomass, with SO assay displaying more reproducible data throughout the study. Most of the strains were metabolically active even at the seven-day incubation period. Microbial adherences of all bacterial strains on the plastic surface was assessed with CV staining: 28 , 17 , 12 and four strains were strong biofilm producers. Moderate biofilm-producing strains included 27 , 14 , eight and three . Weak biofilm-producing strains included: 33 , six , two and one . Only one strain did not develop biofilm.
Our results demonstrate the feasibility of using 96-well microtitre plates as a high-throughput platform for quantitative measurement and assessment of biofilm development over time. Studying microbial adherence or biofilm biomass generated on various surfaces using a high-throughput system could provide valuable information for in vitro testing and developing therapeutics for biofilm infections. Employing the biofilm testing platform described in this study makes it possible to simultaneously develop different biofilms formed by specific pathogens, and study potential association between the quantity of bacterial biomass and strength of a biofilm formed by specific wound pathogens. In addition, the described testing approach could provide an optimal model for standardised and high-throughput screening of candidate antibiofilm therapeutics.
开发并评估一种简单的平台技术,用于在96孔微量滴定板中培养静态生物膜,以用于各种下游应用。该技术能够在七天的时间内,通过使用结晶紫(CV)和番红O(SO)染色,对包括与难治性伤口感染最常相关的临床分离株在内的病原体的生长速率、生物膜形成进行监测,并对生物膜生物量进行定量分析。
本研究共使用了157株细菌,包括[具体细菌种类]和[具体细菌种类]。在600nm光密度(OD)下测量细菌生长。在1天、2天、3天和7天的孵育期内,用570nm的CV和492nm的SO染色对生物膜形成进行监测和定量评估。
96孔板中不同测试菌株的细菌生长速率和静态生物膜生物量各不相同。CV和SO染色在生物量方面显示出相似的结果,在整个研究过程中,SO检测显示的数据更具可重复性。即使在7天的孵育期,大多数菌株仍具有代谢活性。用CV染色评估所有细菌菌株在塑料表面的微生物粘附情况:28株[具体细菌种类]、17株[具体细菌种类]、12株[具体细菌种类]和4株[具体细菌种类]是强生物膜产生菌。中度生物膜产生菌包括27株[具体细菌种类]、14株[具体细菌种类]、8株[具体细菌种类]和3株[具体细菌种类]。弱生物膜产生菌包括:33株[具体细菌种类]、6株[具体细菌种类]、2株[具体细菌种类]和1株[具体细菌种类]。只有1株[具体细菌种类]未形成生物膜。
我们的结果证明了使用96孔微量滴定板作为高通量平台,对生物膜随时间的发育进行定量测量和评估的可行性。使用高通量系统研究在各种表面上产生的微生物粘附或生物膜生物量,可为体外测试和开发生物膜感染治疗方法提供有价值的信息。采用本研究中描述的生物膜测试平台,能够同时培养由特定病原体形成的不同生物膜,并研究细菌生物量的数量与特定伤口病原体形成的生物膜强度之间的潜在关联。此外,所描述的测试方法可为候选抗生物膜治疗药物的标准化和高通量筛选提供最佳模型。