Suppr超能文献

RNA 结合蛋白 Zfp871 缺失的小鼠易于早亡,并易发生脂肪性肝炎,部分是通过 p53-Mdm2 轴。

Mice Deficient in the RNA-Binding Protein Zfp871 Are Prone to Early Death and Steatohepatitis in Part through the p53-Mdm2 Axis.

机构信息

Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California, Davis, California.

Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas.

出版信息

Mol Cancer Res. 2021 Oct;19(10):1751-1762. doi: 10.1158/1541-7786.MCR-21-0239. Epub 2021 Jul 13.

Abstract

p53 transcription factor is activated upon exposure to various cellular stresses, leading to growth suppression. However, aberrant activation of p53 can lead to defects in embryonic development and other abnormalities. Here, we identified zinc finger protein Zfp871 as a p53 target gene. We showed that as an RNA-binding protein, Zfp871 binds to Mdm2 3'UTR and stabilizes Mdm2 mRNA, which in turn suppresses p53 expression through increased expression of Mdm2 E3 ubiquitin ligase. Consistently, Zfp871 deficiency increases p53 expression, leading to growth suppression in a p53-dependent manner. To determine the role of Zfp871 in the p53 pathway, we used deficient mouse model and found that null mice were prone to embryonic/pre-weaning lethality, which can be partially rescued by simultaneous deletion of . We also found that mice heterozygous for had a short lifespan and were susceptible to steatohepatitis but not to spontaneous tumors. To determine the underlying mechanism, RNA-seq analysis was performed and showed that an array of genes involved in development, lipid metabolism, and inflammation is regulated by Zfp871 in conjunction with p53. Taken together, we conclude that the Zfp871-Mdm2-p53 pathway plays a critical role in tumor-free survival and development. IMPLICATIONS: A fine equilibrium of p53 is required for preventing damaging effects of aberrant p53 expression. We identify the Zfp871-Mdm2-p53 pathway that plays a critical role in development of mice and steatohepatitis.

摘要

p53 转录因子在暴露于各种细胞应激时被激活,导致生长受到抑制。然而,p53 的异常激活会导致胚胎发育缺陷和其他异常。在这里,我们鉴定锌指蛋白 Zfp871 为 p53 的靶基因。我们表明,作为一种 RNA 结合蛋白,Zfp871 结合到 Mdm2 3'UTR 并稳定 Mdm2 mRNA,这反过来又通过增加 Mdm2 E3 泛素连接酶的表达来抑制 p53 的表达。一致地,Zfp871 缺乏会增加 p53 的表达,从而以 p53 依赖性方式抑制生长。为了确定 Zfp871 在 p53 途径中的作用,我们使用了缺乏的小鼠模型,发现缺失型小鼠易发生胚胎/新生期致死,这可以部分通过同时缺失 来挽救。我们还发现,杂合子小鼠的寿命较短,易发生 steatohepatitis,但不易发生自发性肿瘤。为了确定潜在的机制,进行了 RNA-seq 分析,结果表明,一系列涉及发育、脂质代谢和炎症的基因受 Zfp871 与 p53 的共同调节。总之,我们得出结论,Zfp871-Mdm2-p53 途径在无肿瘤生存和发育中起着关键作用。

意义

p53 表达异常需要精细的平衡才能防止破坏性影响。我们确定了 Zfp871-Mdm2-p53 途径在小鼠发育和 steatohepatitis 中起着关键作用。

相似文献

1
Mice Deficient in the RNA-Binding Protein Zfp871 Are Prone to Early Death and Steatohepatitis in Part through the p53-Mdm2 Axis.
Mol Cancer Res. 2021 Oct;19(10):1751-1762. doi: 10.1158/1541-7786.MCR-21-0239. Epub 2021 Jul 13.
3
Regulation of Mdm2 protein stability and the p53 response by NEDD4-1 E3 ligase.
Oncogene. 2015 Jan 15;34(3):281-9. doi: 10.1038/onc.2013.557. Epub 2014 Jan 13.
4
Regulation of the MDM2-p53 pathway by the ubiquitin ligase HERC2.
Mol Oncol. 2020 Jan;14(1):69-86. doi: 10.1002/1878-0261.12592. Epub 2019 Nov 15.
5
microRNA-1827 represses MDM2 to positively regulate tumor suppressor p53 and suppress tumorigenesis.
Oncotarget. 2016 Feb 23;7(8):8783-96. doi: 10.18632/oncotarget.7088.
6
MicroRNA-339-5p inhibits colorectal tumorigenesis through regulation of the MDM2/p53 signaling.
Oncotarget. 2014 Oct 15;5(19):9106-17. doi: 10.18632/oncotarget.2379.
8
Mdm2 is a target and mediator of IRP2 in cell growth control.
FASEB J. 2020 Feb;34(2):2301-2311. doi: 10.1096/fj.201902278RR. Epub 2019 Dec 12.
9
RBM38 plays a tumor-suppressor role via stabilizing the p53-mdm2 loop function in hepatocellular carcinoma.
J Exp Clin Cancer Res. 2018 Sep 3;37(1):212. doi: 10.1186/s13046-018-0852-x.
10
Differential requirements for MDM2 E3 activity during embryogenesis and in adult mice.
Genes Dev. 2021 Jan 1;35(1-2):117-132. doi: 10.1101/gad.341875.120. Epub 2020 Dec 17.

引用本文的文献

1
TAp63γ is the primary isoform of TP63 for tumor suppression but not development.
Cell Death Discov. 2025 Feb 6;11(1):51. doi: 10.1038/s41420-025-02326-x.
2
Ferredoxin 1 is essential for embryonic development and lipid homeostasis.
Elife. 2024 Jan 22;13:e91656. doi: 10.7554/eLife.91656.
4
Poly zinc finger protein ZFP14 suppresses lymphomagenesis and abnormal inflammatory response via the HOXA gene cluster.
Biochim Biophys Acta Mol Basis Dis. 2023 Jan 1;1869(1):166587. doi: 10.1016/j.bbadis.2022.166587. Epub 2022 Oct 28.
5
Deciphering the Role of 3D Genome Organization in Breast Cancer Susceptibility.
Front Genet. 2022 Jan 11;12:788318. doi: 10.3389/fgene.2021.788318. eCollection 2021.

本文引用的文献

1
PABPN1, a Target of p63, Modulates Keratinocyte Differentiation through Regulation of p63α mRNA Translation.
J Invest Dermatol. 2020 Nov;140(11):2166-2177.e6. doi: 10.1016/j.jid.2020.03.942. Epub 2020 Mar 31.
2
Cancer the'RBP'eutics-RNA-binding proteins as therapeutic targets for cancer.
Pharmacol Ther. 2019 Nov;203:107390. doi: 10.1016/j.pharmthera.2019.07.001. Epub 2019 Jul 11.
3
Rbm24, a target of p53, is necessary for proper expression of p53 and heart development.
Cell Death Differ. 2018 Jun;25(6):1118-1130. doi: 10.1038/s41418-017-0029-8. Epub 2018 Jan 22.
4
Zinc-finger proteins in health and disease.
Cell Death Discov. 2017 Nov 13;3:17071. doi: 10.1038/cddiscovery.2017.71. eCollection 2017.
5
Ninjurin 1 has two opposing functions in tumorigenesis in a p53-dependent manner.
Proc Natl Acad Sci U S A. 2017 Oct 24;114(43):11500-11505. doi: 10.1073/pnas.1711814114. Epub 2017 Oct 9.
6
The Role of KRAB-ZFPs in Transposable Element Repression and Mammalian Evolution.
Trends Genet. 2017 Nov;33(11):871-881. doi: 10.1016/j.tig.2017.08.006. Epub 2017 Sep 19.
7
Ferredoxin reductase is critical for p53-dependent tumor suppression via iron regulatory protein 2.
Genes Dev. 2017 Jun 15;31(12):1243-1256. doi: 10.1101/gad.299388.117. Epub 2017 Jul 26.
8
KRAB zinc-finger proteins contribute to the evolution of gene regulatory networks.
Nature. 2017 Mar 23;543(7646):550-554. doi: 10.1038/nature21683. Epub 2017 Mar 8.
9
Multilayered Control of Alternative Splicing Regulatory Networks by Transcription Factors.
Mol Cell. 2017 Feb 2;65(3):539-553.e7. doi: 10.1016/j.molcel.2017.01.011.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验