Suppr超能文献

用于高性能铁基费托合成的基于生物甘蔗的碳载体

Biosugarcane-based carbon support for high-performance iron-based Fischer-Tropsch synthesis.

作者信息

Bai Jingyang, Qin Chuan, Xu Yanfei, Du Yixiong, Ma Guangyuan, Ding Mingyue

机构信息

School of Power and Mechanical Engineering, the Institute of Technological Sciences, Wuhan University, Wuhan 430072, China.

Shenzhen Research Institute of Wuhan University, Shenzhen 518108, China.

出版信息

iScience. 2021 Jun 12;24(7):102715. doi: 10.1016/j.isci.2021.102715. eCollection 2021 Jul 23.

Abstract

Exploiting new carbon supports with adjustable metal-support interaction and low price is of prime importance to realize the maximum active iron efficiency and industrial-scale application of Fe-based catalysts for Fischer-Tropsch synthesis (FTS). Herein, a simple, tunable, and scalable biochar support derived from the sugarcane bagasse was successfully prepared and was first used for FTS. The metal-support interaction was precisely controlled by functional groups of biosugarcane-based carbon material and different iron species sizes. All catalysts synthesized displayed high activities, and the iron-time-yield of Fe/C even reached 1,198.9 μmol g s. This performance was due to the unique structure and characteristics of the biosugarcane-based carbon support, which possessed abundant C-O, C=O (η(O) and η(C, O)) functional groups, thus endowing the moderate metal-support interaction, high dispersion of active iron species, more active ε-FeC phase, and, most importantly, a high proportion of FeC/Fe, facilitating the maximum iron efficiency and intrinsic activity of the catalyst.

摘要

开发具有可调节金属-载体相互作用且价格低廉的新型碳载体对于实现费托合成(FTS)铁基催化剂的最大活性铁效率和工业规模应用至关重要。在此,成功制备了一种源自甘蔗渣的简单、可调节且可扩展的生物炭载体,并首次将其用于FTS。通过基于生物甘蔗的碳材料的官能团和不同铁物种尺寸精确控制金属-载体相互作用。所有合成的催化剂均表现出高活性,Fe/C的铁时空产率甚至达到1198.9 μmol g⁻¹ s⁻¹。这种性能归因于基于生物甘蔗的碳载体的独特结构和特性,其具有丰富的C-O、C=O(η(O)和η(C, O))官能团,从而赋予适度的金属-载体相互作用、活性铁物种的高分散性、更多活性ε-FeC相,最重要的是,高比例的FeC/Fe,促进了催化剂的最大铁效率和本征活性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aced/8253968/fffe09e8e2b0/fx1.jpg

相似文献

1
Biosugarcane-based carbon support for high-performance iron-based Fischer-Tropsch synthesis.
iScience. 2021 Jun 12;24(7):102715. doi: 10.1016/j.isci.2021.102715. eCollection 2021 Jul 23.
2
Preparation of Nitrogen Doped Biochar-Based Iron Catalyst for Enhancing Gasoline-Range Hydrocarbons Production.
ACS Appl Mater Interfaces. 2022 Oct 12;14(40):45516-45525. doi: 10.1021/acsami.2c14675. Epub 2022 Sep 29.
6
Facile Fabrication of BCN Nanosheet-Encapsulated Nano-Iron as Highly Stable Fischer-Tropsch Synthesis Catalyst.
ACS Appl Mater Interfaces. 2017 Apr 26;9(16):14319-14327. doi: 10.1021/acsami.7b00561. Epub 2017 Apr 14.
7
Carbon-based catalysts for Fischer-Tropsch synthesis.
Chem Soc Rev. 2021 Mar 1;50(4):2337-2366. doi: 10.1039/d0cs00905a.
8
Stabilizing Optimal Crystalline Facet of Cobalt Catalysts for Fischer-Tropsch Synthesis.
ACS Appl Mater Interfaces. 2019 Sep 18;11(37):33886-33893. doi: 10.1021/acsami.9b10174. Epub 2019 Sep 9.
10
Synthesis of stable and low-CO selective ε-iron carbide Fischer-Tropsch catalysts.
Sci Adv. 2018 Oct 12;4(10):eaau2947. doi: 10.1126/sciadv.aau2947. eCollection 2018 Oct.

引用本文的文献

本文引用的文献

4
Chitosan, starch, polyaniline and polypyrrole biocomposite with sugarcane bagasse for the efficient removal of Acid Black dye.
Int J Biol Macromol. 2020 Mar 15;147:439-452. doi: 10.1016/j.ijbiomac.2019.12.257. Epub 2020 Jan 7.
5
A Theory/Experience Description of Support Effects in Carbon-Supported Catalysts.
Chem Rev. 2020 Jan 22;120(2):1250-1349. doi: 10.1021/acs.chemrev.9b00209. Epub 2019 Oct 2.
6
Synthesis of stable and low-CO selective ε-iron carbide Fischer-Tropsch catalysts.
Sci Adv. 2018 Oct 12;4(10):eaau2947. doi: 10.1126/sciadv.aau2947. eCollection 2018 Oct.
7
Efficient Oxygen Reduction Reaction (ORR) Catalysts Based on Single Iron Atoms Dispersed on a Hierarchically Structured Porous Carbon Framework.
Angew Chem Int Ed Engl. 2018 Jul 16;57(29):9038-9043. doi: 10.1002/anie.201804958. Epub 2018 Jun 19.
8
Sorption of norfloxacin, sulfamerazine and oxytetracycline by KOH-modified biochar under single and ternary systems.
Bioresour Technol. 2018 Sep;263:385-392. doi: 10.1016/j.biortech.2018.05.022. Epub 2018 May 8.
10
Degradation of Orange G by Fenton-like reaction with Fe-impregnated biochar catalyst.
Bioresour Technol. 2018 Feb;249:368-376. doi: 10.1016/j.biortech.2017.10.030. Epub 2017 Oct 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验