Suppr超能文献

在实际费托合成条件下作为高温催化剂的ε-碳化铁的稳定性

Stabilization of ε-iron carbide as high-temperature catalyst under realistic Fischer-Tropsch synthesis conditions.

作者信息

Lyu Shuai, Wang Li, Li Zhe, Yin Shukun, Chen Jie, Zhang Yuhua, Li Jinlin, Wang Ye

机构信息

Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan, 430074, China.

State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.

出版信息

Nat Commun. 2020 Dec 4;11(1):6219. doi: 10.1038/s41467-020-20068-5.

Abstract

The development of efficient catalysts for Fischer-Tropsch (FT) synthesis, a core reaction in the utilization of non-petroleum carbon resources to supply energy and chemicals, has attracted much recent attention. ε-Iron carbide (ε-FeC) was proposed as the most active iron phase for FT synthesis, but this phase is generally unstable under realistic FT reaction conditions (> 523 K). Here, we succeed in stabilizing pure-phase ε-FeC nanocrystals by confining them into graphene layers and obtain an iron-time yield of 1258 μmol gs under realistic FT synthesis conditions, one order of magnitude higher than that of the conventional carbon-supported Fe catalyst. The ε-FeC@graphene catalyst is stable at least for 400 h under high-temperature conditions. Density functional theory (DFT) calculations reveal the feasible formation of ε-FeC by carburization of α-Fe precursor through interfacial interactions of ε-FeC@graphene. This work provides a promising strategy to design highly active and stable Fe-based FT catalysts.

摘要

费托(FT)合成是利用非石油碳资源供应能源和化学品的核心反应,开发高效的费托合成催化剂最近备受关注。ε-碳化铁(ε-FeC)被认为是费托合成中活性最高的铁相,但该相在实际的费托反应条件下(>523K)通常不稳定。在此,我们通过将纯相ε-FeC纳米晶体限制在石墨烯层中成功使其稳定,并在实际的费托合成条件下获得了1258μmol gs的铁时空产率,比传统的碳负载铁催化剂高一个数量级。ε-FeC@石墨烯催化剂在高温条件下至少稳定400小时。密度泛函理论(DFT)计算表明,通过ε-FeC@石墨烯的界面相互作用,α-Fe前驱体碳化可形成ε-FeC。这项工作为设计高活性和稳定的铁基费托催化剂提供了一种有前景的策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f02f/7719174/56c5e584d82e/41467_2020_20068_Fig1_HTML.jpg

相似文献

2
Synthesis of stable and low-CO selective ε-iron carbide Fischer-Tropsch catalysts.
Sci Adv. 2018 Oct 12;4(10):eaau2947. doi: 10.1126/sciadv.aau2947. eCollection 2018 Oct.
3
ε-Iron carbide as a low-temperature Fischer-Tropsch synthesis catalyst.
Nat Commun. 2014 Dec 12;5:5783. doi: 10.1038/ncomms6783.
5
Biosugarcane-based carbon support for high-performance iron-based Fischer-Tropsch synthesis.
iScience. 2021 Jun 12;24(7):102715. doi: 10.1016/j.isci.2021.102715. eCollection 2021 Jul 23.
8
In Situ Surface-Sensitive Investigation of Multiple Carbon Phases on Fe(110) in the Fischer-Tropsch Synthesis.
ACS Catal. 2022 Jul 1;12(13):7609-7621. doi: 10.1021/acscatal.2c00905. Epub 2022 Jun 13.
10
Facile Fabrication of BCN Nanosheet-Encapsulated Nano-Iron as Highly Stable Fischer-Tropsch Synthesis Catalyst.
ACS Appl Mater Interfaces. 2017 Apr 26;9(16):14319-14327. doi: 10.1021/acsami.7b00561. Epub 2017 Apr 14.

引用本文的文献

1
Transformation of CO to C alcohols by tailoring the oxygen bonding via Fe-based tandem catalyst.
Nat Commun. 2025 Aug 6;16(1):7265. doi: 10.1038/s41467-025-62727-5.
3
Potassium-stabilized metastable carbides and chalcogenides via surface chemical potential modulation.
Nat Commun. 2025 Apr 24;16(1):3869. doi: 10.1038/s41467-025-59124-3.
5
Structure-reactivity relationships in CO hydrogenation to C chemicals on Fe-based catalysts.
Chem Sci. 2024 Dec 16;16(3):1071-1092. doi: 10.1039/d4sc06376g. eCollection 2025 Jan 15.
6
Shielding the Hägg carbide by a graphene layer for ultrahigh carbon efficiency during syngas conversion.
Proc Natl Acad Sci U S A. 2024 Dec 10;121(50):e2407624121. doi: 10.1073/pnas.2407624121. Epub 2024 Dec 4.
10
Facet sensitivity of iron carbides in Fischer-Tropsch synthesis.
Nat Commun. 2024 Jul 19;15(1):6108. doi: 10.1038/s41467-024-50544-1.

本文引用的文献

1
Anchoring Cu species over nanodiamond-graphene for semi-hydrogenation of acetylene.
Nat Commun. 2019 Sep 30;10(1):4431. doi: 10.1038/s41467-019-12460-7.
3
Synthesis of stable and low-CO selective ε-iron carbide Fischer-Tropsch catalysts.
Sci Adv. 2018 Oct 12;4(10):eaau2947. doi: 10.1126/sciadv.aau2947. eCollection 2018 Oct.
4
Surface chemistry and catalysis confined under two-dimensional materials.
Chem Soc Rev. 2017 Apr 3;46(7):1842-1874. doi: 10.1039/c6cs00424e.
5
Size and Promoter Effects on Stability of Carbon-Nanofiber-Supported Iron-Based Fischer-Tropsch Catalysts.
ACS Catal. 2016 Jun 3;6(6):4017-4024. doi: 10.1021/acscatal.6b00321. Epub 2016 May 13.
8
ε-Iron carbide as a low-temperature Fischer-Tropsch synthesis catalyst.
Nat Commun. 2014 Dec 12;5:5783. doi: 10.1038/ncomms6783.
9
N-doped graphene as an electron donor of iron catalysts for CO hydrogenation to light olefins.
Chem Commun (Camb). 2015 Jan 4;51(1):217-20. doi: 10.1039/c4cc06600f.
10
Probing graphene grain boundaries with optical microscopy.
Nature. 2012 Oct 11;490(7419):235-9. doi: 10.1038/nature11562. Epub 2012 Oct 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验