Suppr超能文献

用于评估开窗式血管内动脉瘤修复术后血流动力学变化的患者特异性计算血流建模

Patient-specific computational flow modelling for assessing hemodynamic changes following fenestrated endovascular aneurysm repair.

作者信息

Tran Kenneth, Yang Weiguang, Marsden Alison, Lee Jason T

机构信息

Division of Vascular Surgery, Stanford University.

Cardiovascular Institute, Stanford University.

出版信息

JVS Vasc Sci. 2021;2:53-69. doi: 10.1016/j.jvssci.2020.11.032. Epub 2021 Mar 3.

Abstract

OBJECTIVE

This study aimed to develop an accessible patient-specific computational flow modelling pipeline for evaluating the hemodynamic performance of fenestrated endovascular aneurysm repair (fEVAR), with the hypothesis that computational flow modelling can detect aortic branch hemodynamic changes associated with fEVAR graft implantation.

METHODS

Patients who underwent fEVAR for juxtarenal aortic aneurysms with the Cook ZFEN were retrospectively selected. Using open-source SimVascular software, preoperative and postoperative visceral aortic anatomy was manually segmented from computed tomography angiograms. Three-dimensional geometric models were then discretized into tetrahedral finite element meshes. Patient-specific pulsatile in-flow conditions were derived from known supraceliac aortic flow waveforms and adjusted for patient body surface area, average resting heart rate, and blood pressure. Outlet boundary conditions consisted of three-element Windkessel models approximated from physiologic flow splits. Rigid wall flow simulations were then performed on preoperative and postoperative models with the same inflow and outflow conditions. We used SimVascular's incompressible Navier-Stokes solver to perform blood flow simulations on a cluster using 72 cores.

RESULTS

Preoperative and postoperative flow simulations were performed for 10 patients undergoing fEVAR with a total of 30 target vessels (20 renal stents, 10 mesenteric scallops). Postoperative models required a higher mean number of mesh elements to reach mesh convergence (3.2 ± 1.8 × 10 vs 2.6 ± 1.1 × 10; = .005) with a longer mean computational time (10.3 ± 6.3 hours vs 7.8 ± 3.5 hours; = .04) compared with preoperative models. fEVAR was associated with small but statistically significant increases in mean peak proximal aortic arterial pressure (140.3 ± 11.0 mm Hg vs 136.9 ± 8.7 mm Hg; = .02) and peak renal artery pressure (131.6 ± 14.8 mm Hg vs 128.9 ± 11.8 mm Hg; = .04) compared with preoperative simulations. No differences were observed in peak pressure in the celiac, superior mesenteric, or distal aortic arteries ( = .17-.96). When measuring blood flow, the only observed difference was an increase in peak renal flow rate after fEVAR (17.5 ± 3.8 mL/s vs 16.9 ± 3.5 mL/s; =.04). fEVAR was not associated with changes in the mean pressure or the mean flow rate in the celiac, superior mesenteric, or renal arteries ( = .06-.98). Stenting of the renal arteries did not induce significant changes time-averaged wall shear stress in the proximal renal artery (23.4 ± 8.1 dynes/cm vs 23.2 ± 8.4 dynes/cm; = .98) or distal renal artery (32.7 ± 13.9 dynes/cm vs 29.6 ± 11.8 dynes/cm; = .23). In addition, computational visualization of crosssectional velocity profiles revealed low flow disturbances associated with protrusion of renal graft fabric into the aortic lumen.

CONCLUSIONS

In a pilot study involving a selective cohort of patients who underwent uncomplicated fEVAR, patient-specific flow modelling was a feasible method for assessing the hemodynamic performance of various two-vessel fenestrated device configurations and revealed subtle differences in computationally derived peak branch pressure and blood flow rates. Structural changes in aortic flow geometry after fEVAR do not seem to affect computationally estimated renovisceral branch perfusion or wall shear stress adversely. Additional studies with invasive angiography or phase contrast magnetic resonance imaging are required to clinically validate these findings.

摘要

目的

本研究旨在开发一种可获取的针对特定患者的计算血流建模流程,用于评估开窗型血管内动脉瘤修复术(fEVAR)的血流动力学性能,其假设为计算血流建模能够检测与fEVAR移植物植入相关的主动脉分支血流动力学变化。

方法

回顾性选取接受Cook ZFEN开窗型血管内动脉瘤修复术治疗近肾主动脉瘤的患者。使用开源的SimVascular软件,从计算机断层血管造影图像中手动分割术前和术后的内脏主动脉解剖结构。然后将三维几何模型离散为四面体有限元网格。根据已知的腹腔干上方主动脉血流波形,推导特定患者的脉动流入条件,并根据患者体表面积、平均静息心率和血压进行调整。出口边界条件由根据生理血流分流近似得到的三元风箱模型组成。然后在术前和术后模型上使用相同的流入和流出条件进行刚性壁血流模拟。我们使用SimVascular的不可压缩纳维 - 斯托克斯求解器在一个使用72个核心的集群上进行血流模拟。

结果

对10例行fEVAR的患者进行了术前和术后血流模拟,共有30条目标血管(20个肾支架,10个肠系膜扇贝)。与术前模型相比,术后模型达到网格收敛所需的平均网格单元数更多(3.2±1.8×10对2.6±1.1×10;P =.005),平均计算时间更长(10.3±6.3小时对7.8±3.5小时;P =.04)。与术前模拟相比,fEVAR与近端主动脉平均峰值动脉压(140.3±11.0 mmHg对136.9±8.7 mmHg;P =.02)和肾动脉峰值压力(131.6±14.8 mmHg对128.9±11.8 mmHg;P =.04)的小幅但具有统计学意义的增加相关。在腹腔干、肠系膜上动脉或远端主动脉的峰值压力方面未观察到差异(P =.17 -.96)。在测量血流时,唯一观察到的差异是fEVAR术后肾血流峰值速率增加(17.5±3.8 mL/s对16.9±3.5 mL/s;P =.04)。fEVAR与腹腔干、肠系膜上动脉或肾动脉的平均压力或平均血流速率变化无关(P =.06 -.98)。肾动脉支架置入术未引起近端肾动脉(23.4±8.1达因/平方厘米对23.2±8.4达因/平方厘米;P =.98)或远端肾动脉(32.7±13.9达因/平方厘米对29.6±11.8达因/平方厘米;P =.23)时间平均壁面剪应力的显著变化。此外,横截面速度剖面的计算可视化显示,肾移植物织物突入主动脉腔相关的血流扰动较低。

结论

在一项涉及接受无并发症fEVAR的选择性患者队列的初步研究中,特定患者的血流建模是评估各种双血管开窗装置配置血流动力学性能的可行方法,并揭示了计算得出的分支峰值压力和血流速率的细微差异。fEVAR后主动脉血流几何结构的结构变化似乎并未对计算估计的肾内脏分支灌注或壁面剪应力产生不利影响。需要进行侵入性血管造影或相位对比磁共振成像的进一步研究来临床验证这些发现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d22/8489209/4489019c68fa/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验