Department of Statistics, University of Wisconsin - Madison, Madison, Wisconsin, USA.
Biostatistics and Medical Informatics, University of Wisconsin - Madison, Madison, Wisconsin, USA.
Stat Med. 2021 Nov 10;40(25):5521-5533. doi: 10.1002/sim.9138. Epub 2021 Jul 13.
We propose a class of alternative estimates and tests to restricted mean survival time (RMST) which improves power in numerous survival scenarios while maintaining a level of interpretability. The industry standards for interpretable hypothesis tests in survival analysis, RMST and logrank tests (LRTs), can suffer from low power in cases where the proportional hazards assumption fails. In particular, when late differences occur between survival curves, our proposed estimate and class of tests, window mean survival time (WMST), outperforms both RMST and LRT without sacrificing interpretability, unlike weighted rank tests (WRTs). WMST has the added advantage of maintaining high power when the proportional hazards assumption is met, while WRTs do not. With testing methods often being chosen in advance of data collection, WMST can ensure adequate power without distributional assumptions and is robust to the choice of its restriction parameters. Functions for performing WMST analysis are provided in the survWM2 package in R.
我们提出了一类替代估计和检验方法,用于受限平均生存时间 (RMST),这些方法在许多生存情况下提高了功效,同时保持了一定的可解释性。在比例风险假设失效的情况下,生存分析中可解释性假设检验的行业标准,即 RMST 和对数秩检验 (LRT),可能功效较低。特别是当生存曲线之间出现晚期差异时,我们提出的估计和检验方法,窗口平均生存时间 (WMST),在不牺牲可解释性的情况下,优于 RMST 和 LRT,而不像加权秩检验 (WRT)。WMST 具有一个额外的优势,即在满足比例风险假设时保持高功效,而 WRT 则没有。由于测试方法通常在数据收集之前选择,因此 WMST 可以在不进行分布假设的情况下确保足够的功效,并且对其限制参数的选择具有稳健性。用于执行 WMST 分析的函数在 R 中的 survWM2 包中提供。