Suppr超能文献

人工双反转恢复图像用于多发性硬化症(皮质下)病变的可视化。

Artificial double inversion recovery images for (juxta)cortical lesion visualization in multiple sclerosis.

机构信息

Department of Anatomy & Neurosciences, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands/Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.

出版信息

Mult Scler. 2022 Apr;28(4):541-549. doi: 10.1177/13524585211029860. Epub 2021 Jul 14.

Abstract

BACKGROUND

Cortical lesions are highly inconspicuous on magnetic resonance imaging (MRI). Double inversion recovery (DIR) has a higher sensitivity than conventional clinical sequences (i.e. T1, T2, FLAIR) but is difficult to acquire, leading to overseen cortical lesions in clinical care and clinical trials.

OBJECTIVE

To evaluate the usability of artificially generated DIR (aDIR) images for cortical lesion detection compared to conventionally acquired DIR (cDIR).

METHODS

The dataset consisted of 3D-T1 and 2D-proton density (PD) T2 images of 73 patients (49RR, 20SP, 4PP) at 1.5 T. Using a 4:1 train:test-ratio, a fully convolutional neural network was trained to predict 3D-aDIR from 3D-T1 and 2D-PD/T2 images. Randomized blind scoring of the test set was used to determine detection reliability, precision and recall.

RESULTS

A total of 626 vs 696 cortical lesions were detected on 15 aDIR vs cDIR images (intraclass correlation coefficient (ICC) = 0.92). Compared to cDIR, precision and recall were 0.84 ± 0.06 and 0.76 ± 0.09, respectively. The frontal and temporal lobes showed the largest differences in discernibility.

CONCLUSION

Cortical lesions can be detected with good reliability on artificial DIR. The technique has potential to broaden the availability of DIR in clinical care and provides the opportunity of ex post facto implementation of cortical lesions imaging in existing clinical trial data.

摘要

背景

磁共振成像(MRI)上皮质病变的显示度较低。双反转恢复(DIR)序列比常规临床序列(即 T1、T2、FLAIR)的敏感度更高,但获取难度较大,这导致在临床护理和临床试验中容易忽略皮质病变。

目的

评估人工生成的 DIR(aDIR)图像在皮质病变检测方面的可用性,与常规采集的 DIR(cDIR)相比。

方法

该数据集由 73 名患者(49 名 RR、20 名 SP、4 名 PP)在 1.5T 下的 3D-T1 和 2D 质子密度(PD)T2 图像组成。使用 4:1 的训练-测试比,训练一个全卷积神经网络,从 3D-T1 和 2D-PD/T2 图像预测 3D-aDIR。使用随机盲评分测试集来确定检测的可靠性、精确性和召回率。

结果

在 15 张 aDIR 和 cDIR 图像上共检测到 626 个 vs 696 个皮质病变(组内相关系数(ICC)=0.92)。与 cDIR 相比,精确率和召回率分别为 0.84±0.06 和 0.76±0.09。额叶和颞叶的可分辨性差异最大。

结论

人工 DIR 可以很好地可靠检测皮质病变。该技术有可能扩大 DIR 在临床护理中的可用性,并提供在现有临床试验数据中事后实施皮质病变成像的机会。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a0af/8961242/0f4a0e0e7cae/10.1177_13524585211029860-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验