Suppr超能文献

过渡金属配合物的计算发现:从高通量筛选到机器学习

Computational Discovery of Transition-metal Complexes: From High-throughput Screening to Machine Learning.

作者信息

Nandy Aditya, Duan Chenru, Taylor Michael G, Liu Fang, Steeves Adam H, Kulik Heather J

机构信息

Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.

Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.

出版信息

Chem Rev. 2021 Aug 25;121(16):9927-10000. doi: 10.1021/acs.chemrev.1c00347. Epub 2021 Jul 14.

Abstract

Transition-metal complexes are attractive targets for the design of catalysts and functional materials. The behavior of the metal-organic bond, while very tunable for achieving target properties, is challenging to predict and necessitates searching a wide and complex space to identify needles in haystacks for target applications. This review will focus on the techniques that make high-throughput search of transition-metal chemical space feasible for the discovery of complexes with desirable properties. The review will cover the development, promise, and limitations of "traditional" computational chemistry (i.e., force field, semiempirical, and density functional theory methods) as it pertains to data generation for inorganic molecular discovery. The review will also discuss the opportunities and limitations in leveraging experimental data sources. We will focus on how advances in statistical modeling, artificial intelligence, multiobjective optimization, and automation accelerate discovery of lead compounds and design rules. The overall objective of this review is to showcase how bringing together advances from diverse areas of computational chemistry and computer science have enabled the rapid uncovering of structure-property relationships in transition-metal chemistry. We aim to highlight how unique considerations in motifs of metal-organic bonding (e.g., variable spin and oxidation state, and bonding strength/nature) set them and their discovery apart from more commonly considered organic molecules. We will also highlight how uncertainty and relative data scarcity in transition-metal chemistry motivate specific developments in machine learning representations, model training, and in computational chemistry. Finally, we will conclude with an outlook of areas of opportunity for the accelerated discovery of transition-metal complexes.

摘要

过渡金属配合物是催化剂和功能材料设计中颇具吸引力的目标。金属-有机键的行为虽然对于实现目标性质具有很强的可调性,但却难以预测,并且需要在广阔而复杂的空间中搜索,以便在海量信息中找到适用于目标应用的“ needles in haystacks”(大海捞针之物)。本综述将聚焦于使高通量搜索过渡金属化学空间成为可能的技术,以发现具有理想性质的配合物。该综述将涵盖“传统”计算化学(即力场、半经验和密度泛函理论方法)在无机分子发现数据生成方面的发展、前景及局限性。综述还将讨论利用实验数据源的机遇与局限。我们将重点关注统计建模、人工智能、多目标优化和自动化方面的进展如何加速先导化合物的发现及设计规则的制定。本综述的总体目标是展示如何将计算化学和计算机科学不同领域的进展结合起来,从而快速揭示过渡金属化学中的结构-性质关系。我们旨在强调金属-有机键基序中的独特考量(例如可变自旋和氧化态以及键合强度/性质)如何使它们及其发现与更常被考虑的有机分子区分开来。我们还将强调过渡金属化学中的不确定性和相对数据稀缺性如何推动机器学习表示、模型训练以及计算化学方面的特定发展。最后,我们将对加速发现过渡金属配合物的机遇领域进行展望并得出结论。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验