Suppr超能文献

基于虚拟配体策略识别最优分子的数学框架。

Mathematical Framework to Identify Optimal Molecule Based on Virtual Ligand Strategy.

作者信息

Matsuoka Wataru, Hirose Ken, Yamada Ren, Oki Taihei, Iwata Satoru, Maeda Satoshi

机构信息

Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan.

JST, ERATO Maeda Artificial Intelligence in Chemical Reaction Design and Discovery Project, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan.

出版信息

J Chem Inf Model. 2025 Jul 14;65(13):6913-6926. doi: 10.1021/acs.jcim.5c00815. Epub 2025 Jun 13.

Abstract

Identifying molecular entities with desired properties from a vast pool of potential candidates is a fundamental challenge in organic chemistry. In particular, ligand engineering─designing optimal ligands for transition metal catalysis─has been extensively studied over the past few decades. To address this challenge, we previously proposed the virtual ligand (VL) approach, a computational method that introduces a mathematical model to approximate ligand molecules within quantum chemical calculations. This model is then optimized to identify the electronic and steric properties most suited for a given reaction. However, the interpretability of the resulting VL parameters remained elusive, limiting predictions to a qualitative level. In this study, we establish a mathematical framework that links real molecules to the VL parameters, thereby enabling rapid and quantitative prediction of optimal ligands. The prediction algorithm was validated across four different reactions, and its accuracy, limitations and potential improvements are discussed.

摘要

从大量潜在候选物中识别具有所需特性的分子实体是有机化学中的一项基本挑战。特别是,配体工程——为过渡金属催化设计最佳配体——在过去几十年中得到了广泛研究。为应对这一挑战,我们之前提出了虚拟配体(VL)方法,这是一种计算方法,它引入了一个数学模型来在量子化学计算中近似配体分子。然后对该模型进行优化,以识别最适合给定反应的电子和空间特性。然而,所得VL参数的可解释性仍然难以捉摸,将预测限制在定性水平。在本研究中,我们建立了一个将真实分子与VL参数联系起来的数学框架,从而能够快速、定量地预测最佳配体。该预测算法在四个不同反应中得到了验证,并讨论了其准确性、局限性和潜在改进。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验