Suppr超能文献

核电子轨道含时密度泛函理论的解析梯度:激发态几何结构优化与绝热激发能

Analytical Gradients for Nuclear-Electronic Orbital Time-Dependent Density Functional Theory: Excited-State Geometry Optimizations and Adiabatic Excitation Energies.

作者信息

Tao Zhen, Roy Saswata, Schneider Patrick E, Pavošević Fabijan, Hammes-Schiffer Sharon

机构信息

Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States.

出版信息

J Chem Theory Comput. 2021 Aug 10;17(8):5110-5122. doi: 10.1021/acs.jctc.1c00454. Epub 2021 Jul 14.

Abstract

The computational investigation of photochemical processes often entails the calculation of excited-state geometries, energies, and energy gradients. The nuclear-electronic orbital (NEO) approach treats specified nuclei, typically protons, quantum mechanically on the same level as the electrons, thereby including the associated nuclear quantum effects and non-Born-Oppenheimer behavior into quantum chemistry calculations. The multicomponent density functional theory (NEO-DFT) and time-dependent DFT (NEO-TDDFT) methods allow efficient calculations of ground and excited states, respectively. Herein, the analytical gradients are derived and implemented for the NEO-TDDFT method and the associated Tamm-Dancoff approximation (NEO-TDA). The programmable equations for these analytical gradients as well as the NEO-DFT analytical Hessian are provided. The NEO approach includes the anharmonic zero-point energy (ZPE) and density delocalization associated with the quantum protons as well as vibronic mixing in geometry optimizations and energy calculations of ground and excited states. The harmonic ZPE associated with the other nuclei can be computed via the NEO Hessian. This approach is used to compute the 0-0 adiabatic excitation energies for a set of nine small molecules with all protons quantized, exhibiting slight improvement over the conventional electronic approach. Geometry optimizations of two excited-state intramolecular proton-transfer systems, [2,2'-bipyridyl]-3-ol and [2,2'-bipyridyl]-3,3'-diol, are performed with one and two quantized protons, respectively. The NEO calculations for these systems produce electronically excited-state geometries with stronger intramolecular hydrogen bonds and similar relative stabilities compared to conventional electronic methods. This work provides the foundation for nonadiabatic dynamics simulations of fundamental processes such as photoinduced proton transfer and proton-coupled electron transfer.

摘要

光化学过程的计算研究通常需要计算激发态的几何结构、能量和能量梯度。核电子轨道(NEO)方法将特定的原子核(通常是质子)与电子置于同一量子力学水平进行处理,从而将相关的核量子效应和非玻恩-奥本海默行为纳入量子化学计算。多组分密度泛函理论(NEO-DFT)和含时密度泛函理论(NEO-TDDFT)方法分别允许对基态和激发态进行高效计算。本文推导并实现了NEO-TDDFT方法及其相关的塔姆-丹科夫近似(NEO-TDA)的解析梯度。提供了这些解析梯度以及NEO-DFT解析海森矩阵的可编程方程。NEO方法在基态和激发态的几何优化及能量计算中包括了与量子质子相关的非谐零点能(ZPE)和密度离域以及振子-电子混合。与其他原子核相关的谐性ZPE可通过NEO海森矩阵计算得到。该方法用于计算一组九个所有质子均被量子化的小分子的0-0绝热激发能,相较于传统电子方法有轻微改进。分别对两个激发态分子内质子转移体系[2,2'-联吡啶]-3-醇和[2,2'-联吡啶]-3,3'-二醇进行了几何优化,其中一个和两个质子被量子化。与传统电子方法相比,这些体系的NEO计算产生了具有更强分子内氢键和相似相对稳定性的电子激发态几何结构。这项工作为光致质子转移和质子耦合电子转移等基本过程的非绝热动力学模拟奠定了基础。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验