Laboratory for Synthetic Chemistry and Chemical Biology Limited, Hong Kong SAR 999077, China.
State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong SAR 999077, China.
J Am Soc Mass Spectrom. 2021 Sep 1;32(9):2346-2357. doi: 10.1021/jasms.1c00076. Epub 2021 Jul 14.
MHC-I peptides are a group of important immunopeptides presented by major histocompatibility complex (MHC) on the cell surface for immune recognition. The majority of reported MHC-I peptides are derived from protein coding sequences, and noncanonical peptides translated from small open reading frames (sORF) are largely unknown due to the lack of accurate and sensitive detection methods. Herein we report an efficient approach that implements complementary bioinformatic strategies to improve the identification of noncanonical MHC-I peptides. In a database search strategy, noncanonical immunopeptides mapping was optimized by combining three complementary pipelines to construct predicted sORF databases from Ribo-seq data. In a peptide sequencing strategy, MS data search results were filtered against sORF databases to pin down additional noncanonical immunopeptides. In total, 308 noncanonical immunopeptides were identified from two tumor cell lines with selected ones vigorously validated. Our approach is a handy solution to identify noncanonical MHC peptides with Ribo-seq and MS data. Meanwhile, the novel noncanonical immunopeptides identified with this method could shed insights on fundamental immunology as well as cancer immunotherapies.
MHC-I 肽是一组重要的免疫肽,由主要组织相容性复合体 (MHC) 呈现在细胞表面,用于免疫识别。大多数报道的 MHC-I 肽来自蛋白质编码序列,而由于缺乏准确和敏感的检测方法,翻译自小开放阅读框 (sORF) 的非典型肽在很大程度上是未知的。在此,我们报告了一种有效的方法,该方法实施了互补的生物信息学策略,以提高非典型 MHC-I 肽的鉴定能力。在数据库搜索策略中,通过结合三种互补的管道,对非典型免疫肽映射进行了优化,从而从 Ribo-seq 数据构建了预测的 sORF 数据库。在肽测序策略中,对 MS 数据搜索结果进行了 sORF 数据库过滤,以确定额外的非典型免疫肽。总共从两种肿瘤细胞系中鉴定出 308 种非典型免疫肽,并对选定的肽进行了大力验证。我们的方法是使用 Ribo-seq 和 MS 数据鉴定非典型 MHC 肽的便捷解决方案。同时,通过这种方法鉴定的新型非典型免疫肽可以为基础免疫学和癌症免疫疗法提供新的见解。