Suppr超能文献

在聚对苯二甲酸乙二酯降解细菌坂井泉古菌中开发靶向基因破坏系统及其在PET酶和MHET酶基因中的应用

Development of a Targeted Gene Disruption System in the Poly(Ethylene Terephthalate)-Degrading Bacterium Ideonella sakaiensis and Its Applications to PETase and MHETase Genes.

作者信息

Hachisuka Shin-Ichi, Nishii Tarou, Yoshida Shosuke

机构信息

Institute for Research Initiatives, Division for Research Strategy, Nara Institute of Science and Technologygrid.260493.a, Ikoma, Nara, Japan.

Graduate School of Biological Science, Nara Institute of Science and Technologygrid.260493.a, Ikoma, Nara, Japan.

出版信息

Appl Environ Microbiol. 2021 Aug 26;87(18):e0002021. doi: 10.1128/AEM.00020-21.

Abstract

Poly(ethylene terephthalate) (PET) is a commonly used synthetic plastic; however, its nonbiodegradability results in a large amount of waste accumulation that has a negative impact on the environment. Recently, a PET-degrading bacterium, Ideonella sakaiensis 201-F6 strain, was isolated, and the enzymes involved in PET digestion, PET hydrolase (PETase), and mono(2-hydroxyethyl) terephthalic acid (MHET) hydrolase (MHETase) were identified. Despite the great potentials of in bioremediation and biorecycling, approaches to studying this bacterium remain limited. In this study, to enable the functional analysis of PETase and MHETase genes , we have developed a gene disruption system in . The pT18-based disruption vector harboring directly connected 5'- and 3'-flanking regions of the target gene for homologous recombination was introduced into cells via conjugation. First, we deleted the orotidine 5'-phosphate decarboxylase gene () from the genome of the wild-type strain, producing the Δ strain with 5-fluoroorotic acid (5-FOA) resistance. Next, using the Δ strain as a parent strain and as a counterselection marker, we disrupted the genes for PETase and MHETase. The growth of both Δ and Δ strains on terephthalic acid (TPA; one of the PET hydrolytic products) was comparable to that of the parent strain. However, these mutant strains dramatically decreased the growth level on PET to that on a no-carbon source. Moreover, the Δ strain completely abolished PET degradation capacity. These results demonstrate that PETase and MHETase are essential for metabolism of PET. The poly(ethylene terephthalate) (PET)-degrading bacterium Ideonella sakaiensis possesses two unique enzymes able to serve in PET hydrolysis. PET hydrolase (PETase) hydrolyzes PET into mono(2-hydroxyethyl) terephthalic acid (MHET), and MHET hydrolase (MHETase) hydrolyzes MHET into terephthalic acid (TPA) and ethylene glycol (EG). These enzymes have attracted global attention, as they have potential to be used for bioconversion of PET. Compared to many studies, including biochemical and crystal structure analyses, few studies have been reported. Here, we developed a targeted gene disruption system in , which was then applied for constructing Δ and Δ strains. Growth of these disruptants revealed that PETase is the sole enzyme responsible for PET degradation in , while PETase and MHETase play essential roles in its PET assimilation.

摘要

聚对苯二甲酸乙二酯(PET)是一种常用的合成塑料;然而,其不可生物降解性导致大量废物积累,对环境产生负面影响。最近,一种PET降解细菌,坂崎肠杆菌201-F6菌株被分离出来,并鉴定出参与PET消化的酶,即PET水解酶(PETase)和对苯二甲酸单(2-羟乙基)酯水解酶(MHETase)。尽管其在生物修复和生物循环方面具有巨大潜力,但研究这种细菌的方法仍然有限。在本研究中,为了能够对PETase和MHETase基因进行功能分析,我们在[具体细菌名称]中开发了一种基因破坏系统。携带用于同源重组的目标基因的直接连接的5'和3'侧翼区域的基于pT18的破坏载体通过接合作用导入[具体细菌名称]细胞。首先,我们从野生型菌株的基因组中删除了乳清苷5'-磷酸脱羧酶基因([具体基因名称]),产生了对5-氟乳清酸(5-FOA)具有抗性的Δ[具体基因名称]菌株。接下来,以Δ[具体基因名称]菌株作为亲本菌株,并以[具体基因名称]作为反选择标记,我们破坏了PETase和MHETase的基因。Δ[PETase基因名称]和Δ[MHETase基因名称]菌株在对苯二甲酸(TPA;PET水解产物之一)上的生长与亲本菌株相当。然而,这些突变菌株在PET上的生长水平急剧下降至无碳源上的生长水平。此外,Δ[PETase基因名称]菌株完全丧失了PET降解能力。这些结果表明,PETase和MHETase对于[具体细菌名称]对PET的代谢至关重要。聚对苯二甲酸乙二酯(PET)降解细菌坂崎肠杆菌拥有两种能够用于PET水解的独特酶。PET水解酶(PETase)将PET水解为对苯二甲酸单(2-羟乙基)酯(MHET),而MHET水解酶(MHETase)将MHET水解为对苯二甲酸(TPA)和乙二醇(EG)。这些酶引起了全球关注,因为它们有潜力用于PET的生物转化。与许多[具体细菌名称]研究相比,包括生化和晶体结构分析,报道的[具体细菌名称]研究很少。在这里,我们在[具体细菌名称]中开发了一种靶向基因破坏系统,然后将其应用于构建Δ[PETase基因名称]和Δ[MHETase基因名称]菌株。这些破坏菌株的生长表明,PETase是[具体细菌名称]中负责PET降解的唯一酶,而PETase和MHETase在其PET同化中起重要作用。

相似文献

3
Ideonella sakaiensis, PETase, and MHETase: From identification of microbial PET degradation to enzyme characterization.
Methods Enzymol. 2021;648:187-205. doi: 10.1016/bs.mie.2020.12.007. Epub 2021 Jan 9.
4
Emerging Roles of PETase and MHETase in the Biodegradation of Plastic Wastes.
Appl Biochem Biotechnol. 2021 Aug;193(8):2699-2716. doi: 10.1007/s12010-021-03562-4. Epub 2021 Apr 1.
5
Characterization and engineering of a two-enzyme system for plastics depolymerization.
Proc Natl Acad Sci U S A. 2020 Oct 13;117(41):25476-25485. doi: 10.1073/pnas.2006753117. Epub 2020 Sep 28.
6
Structure of the plastic-degrading Ideonella sakaiensis MHETase bound to a substrate.
Nat Commun. 2019 Apr 12;10(1):1717. doi: 10.1038/s41467-019-09326-3.
7
Structural analysis of PET-degrading enzymes PETase and MHETase from Ideonella sakaiensis.
Methods Enzymol. 2021;648:337-356. doi: 10.1016/bs.mie.2020.12.015. Epub 2021 Jan 16.
8
[Advances in the structure and function of MHETase].
Sheng Wu Gong Cheng Xue Bao. 2024 Sep 25;40(9):2812-2830. doi: 10.13345/j.cjb.230791.
9
Using a marine microalga as a chassis for polyethylene terephthalate (PET) degradation.
Microb Cell Fact. 2019 Oct 10;18(1):171. doi: 10.1186/s12934-019-1220-z.
10
Increasing the Soluble Expression and Whole-Cell Activity of the Plastic-Degrading Enzyme MHETase through Consensus Design.
Biochemistry. 2024 Jul 2;63(13):1663-1673. doi: 10.1021/acs.biochem.4c00165. Epub 2024 Jun 17.

引用本文的文献

2
Perspectives on the microorganisms with the potentials of PET-degradation.
Front Microbiol. 2025 Mar 12;16:1541913. doi: 10.3389/fmicb.2025.1541913. eCollection 2025.
4
Novel aspects of ethylene glycol catabolism.
Appl Microbiol Biotechnol. 2024 Jun 11;108(1):369. doi: 10.1007/s00253-024-13179-2.
5
Bottlenecks in biobased approaches to plastic degradation.
Nat Commun. 2024 Jun 3;15(1):4715. doi: 10.1038/s41467-024-49146-8.
6
Harnessing photosynthetic microorganisms for enhanced bioremediation of microplastics: A comprehensive review.
Environ Sci Ecotechnol. 2024 Mar 5;20:100407. doi: 10.1016/j.ese.2024.100407. eCollection 2024 Jul.
7
8
Mechanism-Based Design of Efficient PET Hydrolases.
ACS Catal. 2022 Mar 18;12(6):3382-3396. doi: 10.1021/acscatal.1c05856. Epub 2022 Feb 28.

本文引用的文献

1
Structural bioinformatics-based protein engineering of thermo-stable PETase from Ideonella sakaiensis.
Enzyme Microb Technol. 2020 Nov;141:109656. doi: 10.1016/j.enzmictec.2020.109656. Epub 2020 Sep 3.
2
Characterization and engineering of a two-enzyme system for plastics depolymerization.
Proc Natl Acad Sci U S A. 2020 Oct 13;117(41):25476-25485. doi: 10.1073/pnas.2006753117. Epub 2020 Sep 28.
3
Functional expression of polyethylene terephthalate-degrading enzyme (PETase) in green microalgae.
Microb Cell Fact. 2020 Apr 28;19(1):97. doi: 10.1186/s12934-020-01355-8.
4
Biodegradation of waste PET.
EMBO Rep. 2020 Feb 5;21(2):e49826. doi: 10.15252/embr.201949826.
5
Using a marine microalga as a chassis for polyethylene terephthalate (PET) degradation.
Microb Cell Fact. 2019 Oct 10;18(1):171. doi: 10.1186/s12934-019-1220-z.
6
Structure of the plastic-degrading Ideonella sakaiensis MHETase bound to a substrate.
Nat Commun. 2019 Apr 12;10(1):1717. doi: 10.1038/s41467-019-09326-3.
7
Current knowledge on enzymatic PET degradation and its possible application to waste stream management and other fields.
Appl Microbiol Biotechnol. 2019 Jun;103(11):4253-4268. doi: 10.1007/s00253-019-09717-y. Epub 2019 Apr 8.
8
Production of extracellular PETase from Ideonella sakaiensis using sec-dependent signal peptides in E. coli.
Biochem Biophys Res Commun. 2019 Jan 1;508(1):250-255. doi: 10.1016/j.bbrc.2018.11.087. Epub 2018 Nov 24.
9
Tat-Independent Secretion of Polyethylene Terephthalate Hydrolase PETase in Bacillus subtilis 168 Mediated by Its Native Signal Peptide.
J Agric Food Chem. 2018 Dec 19;66(50):13217-13227. doi: 10.1021/acs.jafc.8b05038. Epub 2018 Dec 6.
10
Introduction of Glyoxylate Bypass Increases Hydrogen Gas Yield from Acetate and l-Glutamate in .
Appl Environ Microbiol. 2019 Jan 9;85(2). doi: 10.1128/AEM.01873-18. Print 2019 Jan 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验