Alice Juan I, Bellera Carolina L, Benítez Diego, Comini Marcelo A, Duchowicz Pablo R, Talevi Alan
Laboratorio de Investigación y Desarrollo de Bioactivos (LIDeB), Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), La Plata, Buenos Aires, Argentina.
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CCT La Plata, La Plata, Argentina.
Mol Divers. 2021 Aug;25(3):1361-1373. doi: 10.1007/s11030-021-10265-9. Epub 2021 Jul 15.
Trypanosomatid-caused diseases are among the neglected infectious diseases with the highest disease burden, affecting about 27 million people worldwide and, in particular, socio-economically vulnerable populations. Trypanothione synthetase (TryS) is considered one of the most attractive drug targets within the thiol-polyamine metabolism of typanosomatids, being unique, essential and druggable. Here, we have compiled a dataset of 401 T. brucei TryS inhibitors that includes compounds with inhibitory data reported in the literature, but also in-house acquired data. QSAR classifiers were derived and validated from such dataset, using publicly available and open-source software, thus assuring the portability of the obtained models. The performance and robustness of the resulting models were substantially improved through ensemble learning. The performance of the individual models and the model ensembles was further assessed through retrospective virtual screening campaigns. At last, as an application example, the chosen model-ensemble has been applied in a prospective virtual screening campaign on DrugBank 5.1.6 compound library. All the in-house scripts used in this study are available on request, whereas the dataset has been included as supplementary material.
锥虫病是负担最重的被忽视的传染病之一,全球约有2700万人受其影响,尤其是社会经济弱势群体。锥虫硫醇合成酶(TryS)被认为是锥虫硫醇-多胺代谢中最具吸引力的药物靶点之一,具有独特性、必需性且可成药。在此,我们汇编了一个包含401种布氏锥虫TryS抑制剂的数据集,其中包括文献报道的具有抑制数据的化合物以及内部获取的数据。使用公开可用的开源软件从此类数据集中推导并验证了QSAR分类器,从而确保所获模型的可移植性。通过集成学习,所得模型的性能和稳健性得到了显著提升。通过回顾性虚拟筛选活动进一步评估了各个模型和模型集成的性能。最后,作为一个应用实例,所选择的模型集成已应用于对DrugBank 5.1.6化合物库的前瞻性虚拟筛选活动。本研究中使用的所有内部脚本可应要求提供,而数据集已作为补充材料包含在内。