Mechatronics Engineering Department, College of Electrical and Mechanical Engineering, National University of Sciences and Technology, Islamabad, Pakistan.
Electrical Engineering Department, Military College of Signals, National University of Sciences and Technology, Islamabad, Pakistan.
Big Data. 2022 Feb;10(1):34-53. doi: 10.1089/big.2021.0043. Epub 2021 Jul 14.
Cardiac diseases constitute a major root of global mortality and they are likely to persist. Electrocardiogram (ECG) is widely opted in clinics to detect countless heart illnesses. Numerous artifacts interfere with the ECG signal, and their elimination is vital to allow medical specialists to acquire valuable statistics from the ECG. The utmost artifact that is added to the ECG signal is power line interference (PLI). Numerous filtering methods have been employed in the literature to eliminate PLI from noisy ECG. This article proposes an extended Kalman filter (EKF)-based adaptive noise canceller (ANC) that comprises PLI frequency as a distinct model parameter. Thus, it is capable of tracking PLI with drifting frequency. The proposed canceller's performance is compared with state-space recursive least squares (SSRLSs) filter-based PLI canceling. The evaluation is carried out for four cases of PLI, that is, PLI with known amplitude and frequency, PLI with unknown amplitude and frequency, PLI with drifting amplitude and frequency, and PLI removal from a real-time ECG recording. The samples of the Massachusetts Institude of Technology (MIT)-Boston's Beth Israel Hospital (BIH) arrhythmia database are considered for the first three cases, whereas, for the fourth case, real ECG signal is taken from armed forces institude of cardiology, the national institude of heart diseases (AFIC/NIHD), Pakistan. Mean square error, frequency spectrum, and noise reduction are selected as performance metrics for comparison. Simulation results depict that the presented EKF-based ANC system outperforms the SSRLS-based ANC system and effectively eliminates PLI from ECG under all four investigated scenarios.
心脏病是全球死亡的主要根源之一,而且这种情况可能会持续存在。心电图(ECG)在临床上被广泛用于检测无数的心脏疾病。大量的伪影会干扰 ECG 信号,因此消除这些伪影对于医疗专家从 ECG 中获取有价值的统计数据至关重要。ECG 信号中最主要的伪影是电力线干扰(PLI)。在文献中已经采用了许多滤波方法来消除有噪声的 ECG 中的 PLI。本文提出了一种基于扩展卡尔曼滤波器(EKF)的自适应噪声消除器(ANC),它将 PLI 频率作为一个独特的模型参数。因此,它能够跟踪频率漂移的 PLI。将所提出的消除器的性能与基于状态空间递归最小二乘法(SSRLS)滤波器的 PLI 消除进行比较。评估分为四种 PLI 情况进行,即幅度和频率已知的 PLI、幅度和频率未知的 PLI、幅度和频率漂移的 PLI 以及从实时 ECG 记录中去除 PLI。麻省理工学院(MIT)-波士顿 Beth Israel 医院(BIH)心律失常数据库的样本用于前三种情况,而对于第四种情况,从巴基斯坦武装部队心脏病研究所(AFIC/NIHD)的真实 ECG 信号中提取数据。均方误差、频谱和降噪被选为比较的性能指标。仿真结果表明,所提出的基于 EKF 的 ANC 系统优于基于 SSRLS 的 ANC 系统,并且在所有四种研究场景下都能有效地从 ECG 中消除 PLI。