文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于黏液的纳米粒的配方与评价用于依泽替米贝的有效传递

Formulation and Evaluation of Mucilage-Based Nanoparticles for Effective Delivery of Ezetimibe.

机构信息

College of Pharmacy, University of Sargodha, Sargodha, Pakistan.

College of Pharmacy, Al Ain University, Abu Dhabi Campus, Abu Dhabi, United Arab Emirates.

出版信息

Int J Nanomedicine. 2021 Jul 5;16:4579-4596. doi: 10.2147/IJN.S308790. eCollection 2021.


DOI:10.2147/IJN.S308790
PMID:34267514
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8275157/
Abstract

INTRODUCTION: The aim of current study was to prepare mucilage (LUM) based nanoparticles, capable of encapsulating hydrophobic drug ezetimibe as nanocarriers. METHODS: Solvent evaporation and nanoprecipitation techniques were used to develop nanoparticles by encapsulating ezetimibe in the articulated matrix of polysaccharide fractions. Developed nanoparticles were characterized to determine the particle size, zeta potential, polydispersibility index (PDI), and entrapment efficiency (EE). Morphology and physicochemical characterization were carried out through SEM, FTIR, PXRD and thermal analysis. Saturation solubility and in vitro release studies were also performed. Safety assessment of ezetimibe loaded nanoparticles was evaluated via oral acute toxicity study. RESULTS: The mean particle size, zeta potential, PDI and EE for emulsion solvent evaporation were 683.6 nm, -28.3 mV, 0.39, 63.7% and for nanoprecipitation were 637.7 nm, 0.07, -27.1 mV and 80%, respectively. Thermal analysis confirmed enhanced thermal stability, whereas PXRD confirmed amorphous nature of drug. Saturation solubility (p-value <0.05) demonstrated improved solubility of drug when enclosed in linseed nanoparticles. Nanoprecipitation surpasses emulsion solvent evaporation in dissolution test by possessing smaller size. Acute oral toxicity study indicated no significant changes in behavioral, clinical or histopathological parameters of control and experimental groups. CONCLUSION: The in vitro release of ezetimibe was augmented by enhancing aqueous solubility through devised nanoparticles. Thus, linseed mucilage could act as biopolymer in the fabrication of nanoparticle formulation. The acute oral toxicological investigations provided evidence that LUMNs were safe after oral administration.

摘要

简介:本研究旨在制备以黏液素(LUM)为基础的纳米粒子,将难溶于水的药物依泽替米贝作为纳米载体进行包封。

方法:采用溶剂蒸发法和纳米沉淀法,通过将依泽替米贝包埋在多糖分数的连接基质中制备纳米粒子。对所开发的纳米粒子进行特性鉴定,以确定粒径、Zeta 电位、多分散指数(PDI)和包封效率(EE)。采用扫描电子显微镜(SEM)、傅里叶变换红外光谱(FTIR)、粉末 X 射线衍射(PXRD)和热分析对形态和物理化学特性进行研究。还进行了饱和溶解度和体外释放研究。通过口服急性毒性研究评估载有依泽替米贝的纳米粒子的安全性。

结果:乳化溶剂蒸发法的平均粒径、Zeta 电位、PDI 和 EE 分别为 683.6nm、-28.3mV、0.39 和 63.7%,而纳米沉淀法分别为 637.7nm、0.07、-27.1mV 和 80%。热分析证实药物的热稳定性增强,而 X 射线衍射分析(PXRD)证实药物呈非晶态。药物包封在亚麻籽油纳米粒子中后,其溶解度显著提高(p 值<0.05)。在溶解试验中,纳米沉淀法优于乳化溶剂蒸发法,因为纳米沉淀法具有更小的粒径。急性口服毒性研究表明,对照组和实验组的行为、临床或组织病理学参数均无显著变化。

结论:通过设计的纳米粒子提高了依泽替米贝的水溶解度,从而增强了其体外释放。因此,亚麻籽油黏液素可作为生物聚合物用于纳米粒制剂的制备。急性口服毒性研究提供了证据,表明 LUMN 经口服给药后是安全的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7bbb/8275157/610499264d7c/IJN-16-4579-g0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7bbb/8275157/67ff986dfb27/IJN-16-4579-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7bbb/8275157/15163172e179/IJN-16-4579-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7bbb/8275157/d0929b15c74a/IJN-16-4579-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7bbb/8275157/27203264fb35/IJN-16-4579-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7bbb/8275157/94e6d593187a/IJN-16-4579-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7bbb/8275157/7fe60754935e/IJN-16-4579-g0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7bbb/8275157/f297f7df2b50/IJN-16-4579-g0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7bbb/8275157/3fcbae340a63/IJN-16-4579-g0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7bbb/8275157/7eab86e5a6f1/IJN-16-4579-g0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7bbb/8275157/ddf149fd5f92/IJN-16-4579-g0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7bbb/8275157/610499264d7c/IJN-16-4579-g0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7bbb/8275157/67ff986dfb27/IJN-16-4579-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7bbb/8275157/15163172e179/IJN-16-4579-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7bbb/8275157/d0929b15c74a/IJN-16-4579-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7bbb/8275157/27203264fb35/IJN-16-4579-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7bbb/8275157/94e6d593187a/IJN-16-4579-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7bbb/8275157/7fe60754935e/IJN-16-4579-g0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7bbb/8275157/f297f7df2b50/IJN-16-4579-g0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7bbb/8275157/3fcbae340a63/IJN-16-4579-g0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7bbb/8275157/7eab86e5a6f1/IJN-16-4579-g0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7bbb/8275157/ddf149fd5f92/IJN-16-4579-g0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7bbb/8275157/610499264d7c/IJN-16-4579-g0011.jpg

相似文献

[1]
Formulation and Evaluation of Mucilage-Based Nanoparticles for Effective Delivery of Ezetimibe.

Int J Nanomedicine. 2021

[2]
Ezetimibe-Loaded Nanostructured Lipid Carrier Based Formulation Ameliorates Hyperlipidaemia in an Experimental Model of High Fat Diet.

Molecules. 2021-3-9

[3]
Effect of hydroxypropylcellulose and Tween 80 on physicochemical properties and bioavailability of ezetimibe-loaded solid dispersion.

Carbohydr Polym. 2015-5-12

[4]
Comparative study on solid self-nanoemulsifying drug delivery and solid dispersion system for enhanced solubility and bioavailability of ezetimibe.

Int J Nanomedicine. 2015-9-30

[5]
Nanoencapsulation of linseed oil with chia mucilage as structuring material: Characterization, stability and enrichment of orange juice.

Food Res Int. 2018-11-27

[6]
Linum usitatissimum seed mucilage-alginate mucoadhesive microspheres of metformin HCl: Fabrication, characterization and evaluation.

Int J Biol Macromol. 2020-7-15

[7]
Fabrication and characterization of electrospun nanofibers using flaxseed (Linum usitatissimum) mucilage.

Int J Biol Macromol. 2018-3-27

[8]
Preparation and pharmacodynamic assessment of ezetimibe nanocrystals: Effect of P-gp inhibitory stabilizer on particle size and oral absorption.

Colloids Surf B Biointerfaces. 2015-11-1

[9]
Solid lipid nanoparticles as vesicles for oral delivery of olmesartan medoxomil: formulation, optimization and in vivo evaluation.

Drug Dev Ind Pharm. 2017-4

[10]
Modified nanoprecipitation method to fabricate DNA-loaded PLGA nanoparticles.

Drug Dev Ind Pharm. 2009-11

引用本文的文献

[1]
Facile phyto-mediated synthesis of ternary CuO/MnO/ZnO nanocomposite using Nigella Sativa seeds extract: characterization,antimicrobial, and biomedical evaluations.

Sci Rep. 2025-5-8

[2]
Development and characterization of flaxseed mucilage and elastin/collagen biofilms.

Heliyon. 2024-7-29

[3]
Preparation of aripiprazole-poly(methyl vinyl ether--maleic anhydride) nanocomposites via supercritical antisolvent process for improved antidepression therapy.

Regen Biomater. 2022-10-12

[4]
Targeted Strategy in Lipid-Lowering Therapy.

Biomedicines. 2022-5-8

本文引用的文献

[1]
Synthesis of magnetic nanoparticles to detect Sudan dye adulteration in chilli powders.

Food Chem. 2019-7-8

[2]
Curcumin loaded nanoparticles as efficient photoactive formulations against gram-positive and gram-negative bacteria.

Colloids Surf B Biointerfaces. 2019-3-16

[3]
Bioprocessing of Functional Ingredients from Flaxseed.

Molecules. 2018-9-24

[4]
Preformulation, Characterization, and Release Studies of Caffeine-Loaded Solid Lipid Nanoparticles.

J Cosmet Sci. 2018

[5]
Synthesis, characterization, and kinetic release study of methotrexate loaded mPEG-PCL polymersomes for inhibition of MCF-7 breast cancer cell line.

Pharm Dev Technol. 2018-1-18

[6]
Preparation, characterization and antifungal activity of iron oxide nanoparticles.

Microb Pathog. 2018-1-3

[7]
Linseed hydrogel-mediated green synthesis of silver nanoparticles for antimicrobial and wound-dressing applications.

Int J Nanomedicine. 2017-4-6

[8]
Size-controlled starch nanoparticles prepared by self-assembly with different green surfactant: The effect of electrostatic repulsion or steric hindrance.

Food Chem. 2015-12-9

[9]
Polysaccharides based superabsorbent hydrogel from Linseed: Dynamic swelling, stimuli responsive on-off switching and drug release.

Carbohydr Polym. 2015-9-30

[10]
Comparative study on solid self-nanoemulsifying drug delivery and solid dispersion system for enhanced solubility and bioavailability of ezetimibe.

Int J Nanomedicine. 2015-9-30

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索