Liu Maosong, Jin Xin, Li Shun, Billeau Jean-Baptiste, Peng Tingyu, Li Henan, Zhao Long, Zhang Zuotai, Claverie Jerome P, Razzari Luca, Zhang Jianming
Institute of Quantum and Sustainable Technology (IQST), School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
INRS-EMT, 1650, Boul. Lionel-Boulet, Varennes, Quebec J3X 1S2, Canada.
ACS Appl Mater Interfaces. 2021 Jul 28;13(29):34714-34723. doi: 10.1021/acsami.1c07410. Epub 2021 Jul 16.
Recently, localized surface plasmon resonances (SPRs) of metallic nanoparticles (NPs) have been widely used to construct plasmonic nanohybrids for heterogeneous photocatalysis. For example, the combination of plasmonic Au NPs and TiO provides pure TiO visible-light activity. The SPR effect induces an electric field and consequently enhances light scattering and absorption, favoring the transfer of photon energy to hot carriers for catalytic reactions. Numerous approaches have been dedicated to the improvement of SPR absorption in photocatalysts. Here, we have designed a core@shell-satellite nanohybrid catalyst whereby an Ag NP core, as a plasmonic resonator featuring unique dual functions of strong scattering and near-field enhancement, is encapsulated by SiO and TiO layers in sequence, with Au NPs on the outer surface, Ag@SiO@TiO-Au, for efficient plasmonic photocatalysis. By varying the size and number of Ag NP cores, the Au SPR can be tailored over the visible and near-infrared spectral region to reabsorb the scattered photons. In the presence of the Ag core, the incident light is efficiently confined in the reaction suspension by undergoing multiple scattering, thus leading to an increase of the optical path to the photocatalysis. Moreover, using numerical analysis and experimental verifications, we demonstrate that the Ag core also induces a strong near-field enhancement at the Au-TiO interface via SPR coupling with Au. Consequently, the activity of the TiO-Au plasmonic photocatalyst is significantly enhanced, resulting in a high H production rate under visible light. Thus, the design of a single structural unit with strong scattering and field enhancement, induced by a plasmonic resonator, is a highly effective strategy to boost photocatalytic activity.
最近,金属纳米颗粒(NPs)的局域表面等离子体共振(SPRs)已被广泛用于构建用于多相光催化的等离子体纳米杂化物。例如,等离子体金纳米颗粒与TiO的结合赋予了纯TiO可见光活性。表面等离子体共振效应会感应出电场,从而增强光散射和吸收,有利于将光子能量转移到热载流子上以进行催化反应。许多方法都致力于提高光催化剂中的表面等离子体共振吸收。在此,我们设计了一种核壳卫星型纳米杂化催化剂,其中作为具有强散射和近场增强独特双重功能的等离子体谐振器的银纳米颗粒核,依次被SiO和TiO层包裹,外表面有金纳米颗粒,即Ag@SiO@TiO-Au,用于高效的等离子体光催化。通过改变银纳米颗粒核的尺寸和数量,可以在可见光和近红外光谱区域调整金表面等离子体共振,以重新吸收散射的光子。在存在银核的情况下,入射光通过多次散射有效地限制在反应悬浮液中,从而导致光催化的光程增加。此外,通过数值分析和实验验证,我们证明银核还通过与金的表面等离子体共振耦合在金-TiO界面处诱导出强烈的近场增强。因此,TiO-Au等离子体光催化剂的活性显著增强,在可见光下产生高的氢气生成率。因此,由等离子体谐振器诱导的具有强散射和场增强的单一结构单元的设计是提高光催化活性的一种非常有效的策略。