Division of Chemistry and Chemical Engineering, California Institute of Technology , Pasadena, California 91125, United States.
Nano Lett. 2017 Jun 14;17(6):3710-3717. doi: 10.1021/acs.nanolett.7b00992. Epub 2017 May 10.
Efficient photocatalysis requires multifunctional materials that absorb photons and generate energetic charge carriers at catalytic active sites to facilitate a desired chemical reaction. Antenna-reactor complexes are an emerging multifunctional photocatalytic structure where the strong, localized near field of the plasmonic metal nanoparticle (e.g., Ag) is coupled to the catalytic properties of the nonplasmonic metal nanoparticle (e.g., Pt) to enable chemical transformations. With an eye toward sustainable solar driven photocatalysis, we investigate how the structure of antenna-reactor complexes governs their photocatalytic activity in the light-limited regime, where all photons need to be effectively utilized. By synthesizing core@shell/satellite (Ag@SiO/Pt) antenna-reactor complexes with varying Ag nanoparticle diameters and performing photocatalytic CO oxidation, we observed plasmon-enhanced photocatalysis only for antenna-reactor complexes with antenna components of intermediate sizes (25 and 50 nm). Optimal photocatalytic performance was shown to be determined by a balance between maximized local field enhancements at the catalytically active Pt surface, minimized collective scattering of photons out of the catalyst bed by the complexes, and minimal light absorption in the Ag nanoparticle antenna. These results elucidate the critical aspects of local field enhancement, light scattering, and absorption in plasmonic photocatalyst design, especially under light-limited illumination conditions.
高效的光催化需要多功能材料,这些材料能吸收光子并在催化活性位点产生高能电荷载流子,以促进所需的化学反应。天线-反应器复合物是一种新兴的多功能光催化结构,其中等离子体金属纳米粒子(例如 Ag)的强、局域近场与非等离子体金属纳米粒子(例如 Pt)的催化性质耦合,以实现化学转化。着眼于可持续的太阳能驱动光催化,我们研究了天线-反应器复合物的结构如何在限光条件下控制其光催化活性,在这种条件下,所有光子都需要被有效利用。通过合成具有不同 Ag 纳米颗粒直径的核@壳/卫星(Ag@SiO2/Pt)天线-反应器复合物,并进行 CO 光催化氧化反应,我们仅观察到具有中等尺寸(25 和 50nm)天线组件的天线-反应器复合物表现出等离子体增强光催化作用。最佳的光催化性能表现出一种平衡,即最大化催化活性 Pt 表面的局域场增强,最小化复合物将光子从催化剂床中集体散射出的程度,以及最小化 Ag 纳米颗粒天线中的光吸收。这些结果阐明了在等离子体光催化剂设计中,局域场增强、光散射和吸收的关键方面,特别是在限光照明条件下。