Suppr超能文献

基于机器学习和多维碎片化描述符的交替共轭共聚物析氢预测

Hydrogen Evolution Prediction for Alternating Conjugated Copolymers Enabled by Machine Learning with Multidimension Fragmentation Descriptors.

作者信息

Xu Yuzhi, Ju Cheng-Wei, Li Bo, Ma Qiu-Shi, Chen Zhenyu, Zhang Lianjie, Chen Junwu

机构信息

Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China.

College of Chemistry, Nankai University, Tianjin 300071, China.

出版信息

ACS Appl Mater Interfaces. 2021 Jul 28;13(29):34033-34042. doi: 10.1021/acsami.1c05536. Epub 2021 Jul 16.

Abstract

Hydrogen evolution by alternating conjugated copolymers has attracted much attention in recent years. To study alternating copolymers with data-driven strategies, two types of multidimension fragmentation descriptors (MDFD), structure-based MDFD (SMDFD), and electronic property-based MDFD (EPMDFD), have been developed with machine learning (ML) algorithms for the first time. The superiority of SMDFD-based models has been demonstrated by the highly accurate and universal predictions of electronic properties. Moreover, EPMDFD-based, experimental-parameter-free ML models were developed for the prediction of the hydrogen evolution reaction, displaying excellent accuracy (real-test accuracy = 0.91). The combination of explainable ML approaches and first-principles calculations was employed to explore photocatalytic dynamics, revealing the importance of electron delocalization in the excited state. Virtual designing of high-performance candidates can also be achieved. Our work illustrates the huge potential of ML-based material design in the field of polymeric photocatalysts toward high-performance photocatalysis.

摘要

近年来,交替共轭共聚物析氢受到了广泛关注。为了采用数据驱动策略研究交替共聚物,首次利用机器学习(ML)算法开发了两种类型的多维碎片描述符(MDFD),即基于结构的MDFD(SMDFD)和基于电子性质的MDFD(EPMDFD)。基于SMDFD的模型通过对电子性质的高精度和通用预测证明了其优越性。此外,还开发了基于EPMDFD的、无需实验参数的ML模型来预测析氢反应,显示出优异的准确性(实际测试准确率 = 0.91)。采用可解释ML方法与第一性原理计算相结合的方式来探索光催化动力学,揭示了电子离域在激发态中的重要性。还可以实现高性能候选材料的虚拟设计。我们的工作说明了基于ML的材料设计在聚合物光催化剂领域实现高性能光催化方面的巨大潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验