Suppr超能文献

通过实验数据驱动的自适应β-变分自编码器探索优化的有机荧光团搜索

Exploring Optimized Organic Fluorophore Search through Experimental Data-Driven Adaptive β‑VAE.

作者信息

Xu Yuzhi, Luo Yongrui, Li Bo, Jiang Weikang, Zhang Jinyu, Wei Jiangbo, Bai Hanzhi, Wang Zhiqiang, Ge Jiankai, Lin Ruiming, Mi Zehan, Zhang Haozhe, Tang Yifeng, Jones Michael S, Li Xiaotian, Zhang John Z H, Ju Cheng-Wei

机构信息

Department of Chemistry, New York University, New York, New York 10003, United States.

Shanghai Frontiers Science Center of Artificial Intelligence and Deep Learning and NYU-ECNU Center for Computational Chemistry, NYU Shanghai, Shanghai 200062, P. R. China.

出版信息

JACS Au. 2025 Jun 30;5(7):3082-3091. doi: 10.1021/jacsau.5c00052. eCollection 2025 Jul 28.

Abstract

Designing organic fluorescent molecules with tailored optical properties has been a long-standing challenge. Recently, statistical models have opened new avenues for tackling this problem. Inverse design has attracted considerable attention in organic materials science; however, most existing approaches focus on arbitrary design or theoretical properties. Here, we introduce a strategy that enables the direct optimization of specific experimental properties during the inverse design process. Our method employs an adaptive β-variational autoencoder (adaptive β-VAE) combined with a latent vector-based prediction model. By dynamically tuning the Kullback-Leibler divergence scaling factor (β) and employing a separate training strategy, we enhance both the robustness of the generator and the diversity of the generated molecules. We demonstrate that latent vectors from the adaptive β-VAE serve as powerful inputs for downstream prediction models of experimental properties, such as fluorescence energy and quantum yield. Our optimized search framework for organic fluorescent materialsguided by gradients in latent space and validated by newly synthesized molecules sampled from optimal regions in the high-dimensional spaceshows strong potential for broader applications in the design of diverse organic materials.

摘要

设计具有定制光学特性的有机荧光分子一直是一项长期挑战。最近,统计模型为解决这一问题开辟了新途径。逆向设计在有机材料科学中引起了相当大的关注;然而,大多数现有方法侧重于任意设计或理论特性。在此,我们介绍一种策略,该策略能够在逆向设计过程中直接优化特定的实验特性。我们的方法采用自适应β-变分自编码器(adaptive β-VAE)与基于潜在向量的预测模型相结合。通过动态调整库尔贝克-莱布勒散度缩放因子(β)并采用单独的训练策略,我们增强了生成器的鲁棒性以及所生成分子的多样性。我们证明,来自自适应β-VAE的潜在向量可作为实验特性(如荧光能量和量子产率)下游预测模型的强大输入。我们针对有机荧光材料的优化搜索框架——由潜在空间中的梯度引导,并通过从高维空间中的最优区域采样的新合成分子进行验证——在设计各种有机材料方面显示出广泛应用的强大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f7fe/12308382/d0f1a58120b1/au5c00052_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验