Barile Berardino, Marzullo Aldo, Stamile Claudio, Durand-Dubief Françoise, Sappey-Marinier Dominique
CREATIS (CNRS UMR5220 & INSERM U1294), Université Claude Bernard-Lyon 1 & INSA-Lyon, Villeurbanne, France.
Department of Mathematics and Computer Science, University of Calabria, Calabria, Italy.
Brain Connect. 2022 Jun;12(5):476-488. doi: 10.1089/brain.2020.1003. Epub 2021 Oct 6.
Multiple sclerosis (MS) is an autoimmune inflammatory disease of the central nervous system characterized by demyelination and neurodegeneration processes. It leads to different clinical courses and degrees of disability that need to be anticipated by the neurologist for personalized therapy. Recently, machine learning (ML) techniques have reached a high level of performance in brain disease diagnosis and/or prognosis, but the decision process of a trained ML system is typically nontransparent. Using brain structural connectivity data, a fully automatic ensemble learning model, augmented with an interpretable model, is proposed for the estimation of MS patients' disability, measured by the Expanded Disability Status Scale (EDSS). An ensemble of four boosting-based models (GBM, XGBoost, CatBoost, and LightBoost) organized following a stacking generalization scheme was developed using diffusion tensor imaging (DTI)-based structural connectivity data. In addition, an interpretable model based on conditional logistic regression was developed to explain the best performances in terms of white matter (WM) links for three classes of EDSS (low, medium, and high). The ensemble model reached excellent level of performance (root mean squared error of 0.92 ± 0.28) compared with single-based models and provided a better EDSS estimation using DTI-based structural connectivity data compared with conventional magnetic resonance imaging measures associated with patient data (age, gender, and disease duration). Used for interpretation of the estimation process, the counterfactual method showed the importance of certain brain networks, corresponding mainly to left hemisphere WM links, connecting the left superior temporal with the left posterior cingulate and the right precuneus gray matter regions, and the interhemispheric WM links constituting the corpus callosum. Also, a better accuracy estimation was found for the high disability class. The combination of advanced ML models and sensitive techniques such as DTI-based structural connectivity demonstrated to be useful for the estimation of MS patients' disability and to point out the most important brain WM networks involved in disability. Impact statement An ensemble of "boosting" machine learning (ML) models was more performant than single models to estimate disability in multiple sclerosis. Diffusion tensor imaging (DTI)-based structural connectivity led to better performance than conventional magnetic resonance imaging. An interpretable model, based on counterfactual perturbation, highlighted the most relevant white matter fiber links for disability estimation. These findings demonstrated the clinical interest of combining DTI, graph modeling, and ML techniques.
多发性硬化症(MS)是一种中枢神经系统的自身免疫性炎症性疾病,其特征为脱髓鞘和神经退行性变过程。它会导致不同的临床病程和残疾程度,神经科医生需要对此进行预测以制定个性化治疗方案。最近,机器学习(ML)技术在脑部疾病诊断和/或预后方面已达到较高的性能水平,但经过训练的ML系统的决策过程通常是不透明的。利用脑结构连接性数据,我们提出了一种完全自动的集成学习模型,并辅以一个可解释模型,用于通过扩展残疾状态量表(EDSS)评估MS患者的残疾程度。我们使用基于扩散张量成像(DTI)的结构连接性数据,开发了一个遵循堆叠泛化方案组织的由四个基于提升的模型(梯度提升回归树、极端梯度提升、类别提升和轻量级提升)组成的集成模型。此外,还开发了一个基于条件逻辑回归的可解释模型,以解释在白质(WM)连接方面针对三类EDSS(低、中、高)的最佳性能。与基于单个模型相比,该集成模型达到了出色的性能水平(均方根误差为0.92±0.28),并且与与患者数据(年龄、性别和病程)相关的传统磁共振成像测量相比,使用基于DTI的结构连接性数据能更好地估计EDSS。用于解释估计过程的反事实方法显示了某些脑网络的重要性,这些脑网络主要对应于左半球的WM连接,连接左颞上回与左后扣带回以及右楔前叶灰质区域,以及构成胼胝体的半球间WM连接。此外,对于高残疾类别,我们发现了更好的准确性估计。先进的ML模型与基于DTI的结构连接性等敏感技术的结合,被证明有助于估计MS患者的残疾程度,并指出与残疾相关的最重要的脑WM网络。影响声明 一组“提升”机器学习(ML)模型在估计多发性硬化症的残疾程度方面比单个模型表现更优。基于扩散张量成像(DTI)的结构连接性比传统磁共振成像具有更好的性能。一个基于反事实扰动的可解释模型突出了与残疾估计最相关的白质纤维连接。这些发现证明了将DTI、图形建模和ML技术相结合的临床意义。