Suppr超能文献

一种用于发电和气态甲苯降解的垂直配置的光催化-微生物燃料电池。

A vertically configured photocatalytic-microbial fuel cell for electricity generation and gaseous toluene degradation.

机构信息

Tianjin Key Lab. of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin, 300354, PR China.

School of Life Science, Tianjin University, Tianjin, 300372, PR China.

出版信息

Chemosphere. 2021 Dec;285:131530. doi: 10.1016/j.chemosphere.2021.131530. Epub 2021 Jul 13.

Abstract

A vertically configured photocatalytic-microbial fuel cell (photo-MFC) is developed by combining a nanodiamond-decorated ZnO (ZnO/ND) photocathode with a bioanode. The system can effectively couple the light energy with bioenergy to enhance the degradation of volatile organic compounds (VOCs) and boost electricity output. Results show that the composite system exhibits increased performance for toluene removal (60.65%), higher than those of individual parts (ZnO/ND-photocatalysis: 37.16%, MFC: 17.81%). Furthermore, its electrochemical performance is dramatically increased. The peak power density of 120 mW/m and the current density of 1.07 A/m are generated under light illumination, which are about 1.57-fold and 1.37-fold higher than that under dark (76 mW/m, 0.78 A/m), respectively. Microbial community analysis demonstrates Proteobacteria and Firmicute are dominant phyla, implying they play important roles on accelerating the extracellular-electron transfer and toluene degradation. In addition, the underlying mechanism for toluene degradation in the photo-MFC system is preliminary explored. Our results suggest that the photo-MFC has great potential for simultaneous treatment of VOCs with energy recovery.

摘要

一种垂直构型的光催化微生物燃料电池(photo-MFC)通过将纳米金刚石修饰的 ZnO(ZnO/ND)光电阴极与生物阳极相结合而开发。该系统可以有效地将光能与生物能结合起来,以增强挥发性有机化合物(VOCs)的降解并提高电能输出。结果表明,该复合系统对甲苯的去除率(60.65%)明显提高,高于单个部分(ZnO/ND-光催化:37.16%,MFC:17.81%)。此外,其电化学性能也得到了显著提高。在光照下,其峰值功率密度为 120 mW/m,电流密度为 1.07 A/m,分别比在黑暗条件下(76 mW/m,0.78 A/m)提高了约 1.57 倍和 1.37 倍。微生物群落分析表明,变形菌门和厚壁菌门是主要的门,这表明它们在加速细胞外电子转移和甲苯降解方面发挥了重要作用。此外,还初步探讨了 photo-MFC 系统中甲苯降解的潜在机制。我们的研究结果表明,photo-MFC 具有同时处理 VOCs 并回收能源的巨大潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验