Hema Kanipakam, Ahamad Shahzaib, Joon Hemant Kumar, Pandey Rajan, Gupta Dinesh
Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi 110067, India.
ACS Omega. 2021 Jun 30;6(27):17510-17522. doi: 10.1021/acsomega.1c01988. eCollection 2021 Jul 13.
Microtubules are tubulin polymers present in the eukaryotic cytoskeleton essential for structural stability and cell division that are also roadways for intracellular transport of vesicles and organelles. In the human malaria parasite , apart from providing structural stability and cell division, microtubules also facilitate important biological activities crucial for parasite survival in hosts, such as egression and motility. Hence, parasite structures and processes involving microtubules are among the most important drug targets for discovering much-needed novel inhibitors. The current study aims to construct reliable and high-quality 3D models of α-, β-, and γ-tubulins using various modeling techniques. We identified a common binding pocket specific to α-, β-, and γ-tubulins. Molecular dynamics simulations confirmed the stability of the tubulin 3D structures. The models generated in the present study may be used for protein-protein and protein-drug interaction investigations targeted toward designing malaria parasite tubulin-specific inhibitors.
微管是存在于真核细胞骨架中的微管蛋白聚合物,对结构稳定性和细胞分裂至关重要,也是囊泡和细胞器细胞内运输的通道。在人类疟原虫中,微管除了提供结构稳定性和细胞分裂外,还促进对寄生虫在宿主体内存活至关重要的重要生物学活动,如逸出和运动。因此,涉及微管的寄生虫结构和过程是发现急需的新型抑制剂的最重要药物靶点之一。当前的研究旨在使用各种建模技术构建可靠且高质量的α-、β-和γ-微管蛋白的三维模型。我们确定了α-、β-和γ-微管蛋白特有的一个共同结合口袋。分子动力学模拟证实了微管蛋白三维结构的稳定性。本研究中生成的模型可用于针对设计疟原虫微管蛋白特异性抑制剂的蛋白质-蛋白质和蛋白质-药物相互作用研究。