Suppr超能文献

柠檬(Lemon)的植物成分作为 SARS-CoV-2 多靶点抑制剂的潜力:使用分子建模和体外测定方法。

Phytoconstituents of Citrus limon (Lemon) as Potential Inhibitors Against Multi Targets of SARS-CoV-2 by Use of Molecular Modelling and In Vitro Determination Approaches.

机构信息

Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, 643001, The Nilgiris, Tamilnadu, India.

Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh.

出版信息

ChemistryOpen. 2024 Oct;13(10):e202300198. doi: 10.1002/open.202300198. Epub 2024 Jun 21.

Abstract

In the present work, phytoconstituents from Citrus limon are computationally tested against SARS-CoV-2 target protein such as Mpro - (5R82.pdb), Spike - (6YZ5.pdb) &RdRp - (7BTF.pdb) for COVID-19. Docking was done by glide model, QikProp was performed by in silico ADMET screening & Prime MM-GB/SA modules were used to define binding energy. When compared with approved COVID-19 drugs such as Remdesivir, Ritonavir, Lopinavir, and Hydroxychloroquine, plant-based constituents such as Quercetin, Rutoside, Naringin, Eriocitrin, and Hesperidin. bind with significant G-scores to the active SARS-CoV-2 place. The constituents Rutoside and Eriocitrin were studied in each MD simulation in 100 ns against 3 proteins 5R82.pdb, 6YZ5.pdb and 7BTF.pdb.We performed an assay with significant natural compounds from contacts and in silico results (Rutin, Eriocitrin, Naringin, Hesperidin) using 3CL protease assay kit (B.11529 Omicron variant). This kit contained 3CL inhibitor GC376 as Control. The IC value of the test compound was found to be Rutin -17.50 μM, Eriocitrin-37.91 μM, Naringin-39.58 μM, Hesperidine-140.20 μM, the standard inhibitory concentration of GC376 was 38.64 μM. The phytoconstituents showed important interactions with SARS-CoV-2 targets, and potential modifications could be beneficial for future development.

摘要

在本工作中,针对 SARS-CoV-2 的靶标蛋白(如 Mpro-(5R82.pdb)、Spike-(6YZ5.pdb)和 RdRp-(7BTF.pdb)),对柠檬中的植物化合物进行了计算机筛选,以研究其对 COVID-19 的作用。采用 Glide 模型进行对接,通过计算机虚拟 ADMET 筛选进行 QikProp 分析,使用 Prime MM-GB/SA 模块定义结合能。与已批准的 COVID-19 药物(如瑞德西韦、洛匹那韦、利托那韦和羟氯喹)相比,植物化合物如槲皮素、芦丁、柚皮苷、橙皮苷和橙皮苷等,与 SARS-CoV-2 的活性部位具有显著的 G 评分结合。在针对 3 种蛋白(5R82.pdb、6YZ5.pdb 和 7BTF.pdb)的 100ns MD 模拟中,研究了芦丁和橙皮苷的性质。我们使用 3CL 蛋白酶测定试剂盒(B.11529 奥密克戎变体)对来自接触和计算机结果的具有显著天然化合物(芦丁、橙皮苷、柚皮苷、橙皮苷)进行了测定。该试剂盒包含 3CL 抑制剂 GC376 作为对照。测试化合物的 IC 值被发现为芦丁-17.50μM、橙皮苷-37.91μM、柚皮苷-39.58μM、橙皮苷-140.20μM,GC376 的标准抑制浓度为 38.64μM。植物化合物与 SARS-CoV-2 靶标表现出重要的相互作用,潜在的修饰可能有助于未来的发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/70c2/11457754/9f151805dc6b/OPEN-13-e202300198-g011.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验