Suppr超能文献

基于集合经验模态分解的多层去噪在旋转机械故障特征提取中的应用。

Application of multi-layer denoising based on ensemble empirical mode decomposition in extraction of fault feature of rotating machinery.

机构信息

National Engineering Laboratory for Highway Maintenance Equipment, Chang'an University, Xi'an, China.

Henan Gaoyuan Maintenance Technology of Highway Co., Ltd., Xinxiang, China.

出版信息

PLoS One. 2021 Jul 19;16(7):e0254747. doi: 10.1371/journal.pone.0254747. eCollection 2021.

Abstract

Aiming at the problem that the weak features of non-stationary vibration signals are difficult to extract under strong background noise, a multi-layer noise reduction method based on ensemble empirical mode decomposition (EEMD) is proposed. First, the original vibration signal is decomposed by EEMD, and the main intrinsic modal components (IMF) are selected using comprehensive evaluation indicators; the second layer of filtering uses wavelet threshold denoising (WTD) to process the main IMF components. Finally, the virtual noise channel is introduced, and FastICA is used to de-noise and unmix the IMF components processed by the WTD. Next, perform spectral analysis on the separated useful signals to highlight the fault frequency. The feasibility of the proposed method is verified by simulation, and it is applied to the extraction of weak signals of faulty bearings and worn polycrystalline diamond compact bits. The analysis of vibration signals shows that this method can efficiently extract weak fault characteristic information of rotating machinery.

摘要

针对非平稳振动信号在强背景噪声下弱特征难以提取的问题,提出了一种基于集合经验模态分解(EEMD)的多层降噪方法。首先,通过 EEMD 对原始振动信号进行分解,利用综合评价指标选择主要固有模态分量(IMF);第二层滤波采用小波阈值去噪(WTD)处理主要 IMF 分量。最后,引入虚拟噪声通道,使用 FastICA 对 WTD 处理后的 IMF 分量进行去噪和混合分离。然后,对分离出的有用信号进行频谱分析,突出故障频率。通过仿真验证了该方法的可行性,并将其应用于故障轴承和磨损聚晶金刚石钻头的微弱信号提取。振动信号分析表明,该方法能够有效地提取旋转机械的微弱故障特征信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c3f0/8289029/669db7894f85/pone.0254747.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验