Suppr超能文献

简便一步合成镶嵌有锰铁双金属氧化物纳米颗粒的三维蜂窝状多孔壳聚糖珠用于增强染料污染物的降解

Facile one-step synthesis of 3D honeycomb-like porous chitosan bead inlaid with MnFe bimetallic oxide nanoparticles for enhanced degradation of dye pollutant.

作者信息

Yang Jinfan, Ao Zhifeng, Niu Xiaoru, Dong Jiayue, Wang Simin, Wu Hao

机构信息

National Demonstration Center for Experimental Light Chemistry Engineering Education (Shaanxi University of Science & Technology), Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China.

National Demonstration Center for Experimental Light Chemistry Engineering Education (Shaanxi University of Science & Technology), Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China.

出版信息

Int J Biol Macromol. 2021 Sep 1;186:829-838. doi: 10.1016/j.ijbiomac.2021.07.090. Epub 2021 Jul 16.

Abstract

Developing a sustainable, efficient and recyclable heterogeneous Fenton-like catalyst is important to wastewater treatment. Herein, well-dispersed MnO and FeO nanoparticles inlaid in chitosan beads (MnO-FeO/CH) was firstly fabricated and employed in the degradation of methylene blue (MB). The bead was prepared via a facile one-step method by dropwise addition of chitosan-metal salt solution into alkaline solution. Comparing with monometallic chitosan beads (MnO/CH, FeO/CH) and naked MnO-FeO, MnO-FeO/CH displayed significantly higher activity for MB degradation with the assistance of hydrogen peroxide (HO), finally removing 96.8% MB under the optimal conditions (50 mg L MB, 4.0 g L catalyst, 30 g L HO, pH = 7, 60 min). Based on a series of characterizations, the large surface area (60.1 m g), well-developed porosity (0.3 cm g), and intensified electron transport of MnO-FeO/CH consequently enhanced the catalytic performance via a synergistic effect. Because the specific porous structure of MnO-FeO/CH facilitated the adsorption/diffusion of reactants and exposure of active sites. Meanwhile, the electron transfer from Mn to Fe accelerated the Fe/Fe cycle, which favored the production of dominant reactive species hydroxyl radical for MB degradation. Besides, the magnetic beads could be easily collected from the solution and reused for five times with a negligible leaching.

摘要

开发一种可持续、高效且可回收的非均相类芬顿催化剂对于废水处理至关重要。在此,首次制备了负载于壳聚糖微球中的MnO和FeO纳米颗粒(MnO-FeO/CH),并将其用于亚甲基蓝(MB)的降解。该微球通过一种简便的一步法制备,即将壳聚糖-金属盐溶液滴加到碱性溶液中。与单金属壳聚糖微球(MnO/CH、FeO/CH)和裸露的MnO-FeO相比,MnO-FeO/CH在过氧化氢(HO)的辅助下对MB降解表现出显著更高的活性,在最佳条件下(50mg/L MB、4.0g/L催化剂、30g/L HO、pH = 7、60分钟)最终去除了96.8%的MB。基于一系列表征,MnO-FeO/CH较大的表面积(60.1m²/g)、发达的孔隙率(0.3cm³/g)以及增强的电子传输通过协同效应提高了催化性能。因为MnO-FeO/CH特定的多孔结构促进了反应物的吸附/扩散以及活性位点的暴露。同时,从Mn到Fe的电子转移加速了Fe³⁺/Fe²⁺循环,这有利于产生用于MB降解的主要活性物种羟基自由基。此外,磁性微球可轻松从溶液中收集并重复使用五次,浸出量可忽略不计。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验