Suppr超能文献

利用非相干欠采样和深度神经网络重建加速定量磁化率和 R2* 映射。

Accelerating quantitative susceptibility and R2* mapping using incoherent undersampling and deep neural network reconstruction.

机构信息

School of Information Technology and Electrical Engineering, University of Queensland, Brisbane, Australia.

Centre for Advanced Imaging, University of Queensland, Brisbane, Australia; ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, QLD, Australia.

出版信息

Neuroimage. 2021 Oct 15;240:118404. doi: 10.1016/j.neuroimage.2021.118404. Epub 2021 Jul 16.

Abstract

Quantitative susceptibility mapping (QSM) and R2* mapping are MRI post-processing methods that quantify tissue magnetic susceptibility and transverse relaxation rate distributions. However, QSM and R2* acquisitions are relatively slow, even with parallel imaging. Incoherent undersampling and compressed sensing reconstruction techniques have been used to accelerate traditional magnitude-based MRI acquisitions; however, most do not recover the full phase signal, as required by QSM, due to its non-convex nature. In this study, a learning-based Deep Complex Residual Network (DCRNet) is proposed to recover both the magnitude and phase images from incoherently undersampled data, enabling high acceleration of QSM and R2* acquisition. Magnitude, phase, R2*, and QSM results from DCRNet were compared with two iterative and one deep learning methods on retrospectively undersampled acquisitions from six healthy volunteers, one intracranial hemorrhage and one multiple sclerosis patients, as well as one prospectively undersampled healthy subject using a 7T scanner. Peak signal to noise ratio (PSNR), structural similarity (SSIM), root-mean-squared error (RMSE), and region-of-interest susceptibility and R2* measurements are reported for numerical comparisons. The proposed DCRNet method substantially reduced artifacts and blurring compared to the other methods and resulted in the highest PSNR, SSIM, and RMSE on the magnitude, R2*, local field, and susceptibility maps. Compared to two iterative and one deep learning methods, the DCRNet method demonstrated a 3.2% to 9.1% accuracy improvement in deep grey matter susceptibility when accelerated by a factor of four. The DCRNet also dramatically shortened the reconstruction time of single 2D brain images from 36-140 seconds using conventional approaches to only 15-70 milliseconds.

摘要

定量磁化率映射(QSM)和 R2映射是用于量化组织磁化率和横向弛豫率分布的 MRI 后处理方法。然而,即使使用并行成像,QSM 和 R2采集也相对较慢。非相干欠采样和压缩感知重建技术已被用于加速传统基于幅度的 MRI 采集;然而,由于其非凸性质,大多数技术都无法恢复 QSM 所需的完整相位信号。在这项研究中,提出了一种基于学习的深度复残留网络(DCRNet),用于从非相干欠采样数据中恢复幅度和相位图像,从而实现 QSM 和 R2采集的高速加速。将 DCRNet 的幅度、相位、R2和 QSM 结果与两种迭代和一种深度学习方法进行比较,这些方法是对六名健康志愿者、一名颅内出血患者和一名多发性硬化症患者的回顾性欠采样采集以及一名使用 7T 扫描仪进行前瞻性欠采样的健康志愿者的采集结果进行比较。报告了峰值信噪比(PSNR)、结构相似性(SSIM)、均方根误差(RMSE)以及感兴趣区磁化率和 R2测量值,以进行数值比较。与其他方法相比,所提出的 DCRNet 方法大大减少了伪影和模糊,并且在幅度、R2、局部场和磁化率图上获得了最高的 PSNR、SSIM 和 RMSE。与两种迭代和一种深度学习方法相比,当加速因子为四倍时,DCRNet 方法在深部灰质磁化率方面的准确度提高了 3.2%至 9.1%。DCRNet 还将使用传统方法从 36-140 秒重建单个 2D 脑图像的时间从 15-70 毫秒缩短到 70 毫秒。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验