Xu Xiaojian, Gan Weijie, Kothapalli Satya V V N, Yablonskiy Dmitriy A, Kamilov Ulugbek S
Department of Computer Science and Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA.
Department of Radiology, Washington University in St. Louis, St. Louis, MO 63130, USA.
J Math Imaging Vis. 2025 Apr;67(2). doi: 10.1007/s10851-025-01236-y. Epub 2025 Apr 2.
Quantitative MRI (qMRI) refers to a class of MRI methods for quantifying the spatial distribution of biological tissue parameters. Traditional qMRI methods usually deal separately with artifacts arising from accelerated data acquisition, involuntary physical motion, and magnetic field inhomogeneities, leading to sub-optimal end-to-end performance. This paper presents CoRRECT, a unified deep unfolding (DU) framework for qMRI consisting of a model-based end-to-end neural network, a method for motion artifact reduction, and a self-supervised learning scheme. The network is trained to produce R2* maps whose k-space data matches the real data by also accounting for motion and field inhomogeneities. When deployed, CoRRECT only uses the k-space data without any pre-computed parameters for motion or inhomogeneity correction. Our results on experimentally collected multi-gradient recalled echo (mGRE) MRI data show that CoRRECT recovers motion and inhomogeneity artifact-free R2* maps in highly accelerated acquisition settings. This work opens the door to DU methods that can integrate physical measurement models, biophysical signal models, and learned prior models for high-quality qMRI.
定量磁共振成像(qMRI)是指一类用于量化生物组织参数空间分布的磁共振成像方法。传统的qMRI方法通常分别处理因加速数据采集、非自愿身体运动和磁场不均匀性而产生的伪影,导致端到端性能欠佳。本文提出了CoRRECT,这是一种用于qMRI的统一深度展开(DU)框架,由基于模型的端到端神经网络、一种运动伪影减少方法和一种自监督学习方案组成。该网络经过训练,通过考虑运动和场不均匀性来生成其k空间数据与真实数据匹配的R2图。在部署时,CoRRECT仅使用k空间数据,无需任何用于运动或不均匀性校正的预计算参数。我们对实验收集的多梯度回波(mGRE)MRI数据的结果表明,CoRRECT在高度加速采集设置下能够恢复无运动和不均匀性伪影的R2图。这项工作为DU方法打开了大门,这些方法可以集成物理测量模型、生物物理信号模型和用于高质量qMRI的学习先验模型。