Suppr超能文献

一种用于多个单细胞RNA测序样本差异伪时间分析的统计框架。

A statistical framework for differential pseudotime analysis with multiple single-cell RNA-seq samples.

作者信息

Hou Wenpin, Ji Zhicheng, Chen Zeyu, Wherry E John, Hicks Stephanie C, Ji Hongkai

机构信息

Department of Biostatistics, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.

Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC 27710, USA.

出版信息

bioRxiv. 2021 Jul 12:2021.07.10.451910. doi: 10.1101/2021.07.10.451910.

Abstract

Pseudotime analysis with single-cell RNA-sequencing (scRNA-seq) data has been widely used to study dynamic gene regulatory programs along continuous biological processes. While many computational methods have been developed to infer the pseudo-temporal trajectories of cells within a biological sample, methods that compare pseudo-temporal patterns with multiple samples (or replicates) across different experimental conditions are lacking. Lamian is a comprehensive and statistically-rigorous computational framework for differential multi-sample pseudotime analysis. It can be used to identify changes in a biological process associated with sample covariates, such as different biological conditions, and also to detect changes in gene expression, cell density, and topology of a pseudotemporal trajectory. Unlike existing methods that ignore sample variability, Lamian draws statistical inference after accounting for cross-sample variability and hence substantially reduces sample-specific false discoveries that are not generalizable to new samples. Using both simulations and real scRNA-seq data, including an analysis of differential immune response programs between COVID-19 patients with different disease severity levels, we demonstrate the advantages of Lamian in decoding cellular gene expression programs in continuous biological processes.

摘要

利用单细胞RNA测序(scRNA-seq)数据进行的伪时间分析已被广泛用于研究沿连续生物学过程的动态基因调控程序。虽然已经开发了许多计算方法来推断生物样本中细胞的伪时间轨迹,但缺乏将伪时间模式与跨不同实验条件的多个样本(或重复样本)进行比较的方法。拉面(Lamian)是一个用于差异多样本伪时间分析的全面且统计严谨的计算框架。它可用于识别与样本协变量相关的生物过程变化,例如不同的生物学条件,还可检测基因表达、细胞密度和伪时间轨迹拓扑结构的变化。与忽略样本变异性的现有方法不同,拉面在考虑跨样本变异性后进行统计推断,从而大幅减少特定于样本的、无法推广到新样本的错误发现。通过模拟和真实的scRNA-seq数据,包括对不同疾病严重程度的COVID-19患者之间的差异免疫反应程序进行分析,我们展示了拉面在解码连续生物学过程中的细胞基因表达程序方面的优势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d32/8288148/0f4fa67f1cb5/nihpp-2021.07.10.451910v1-f0001.jpg

相似文献

1
A statistical framework for differential pseudotime analysis with multiple single-cell RNA-seq samples.
bioRxiv. 2021 Jul 12:2021.07.10.451910. doi: 10.1101/2021.07.10.451910.
2
3
Unraveling the timeline of gene expression: A pseudotemporal trajectory analysis of single-cell RNA sequencing data.
F1000Res. 2023 Nov 10;12:684. doi: 10.12688/f1000research.134078.2. eCollection 2023.
4
Pseudotime Reconstruction Using TSCAN.
Methods Mol Biol. 2019;1935:115-124. doi: 10.1007/978-1-4939-9057-3_8.
5
A robust and accurate single-cell data trajectory inference method using ensemble pseudotime.
BMC Bioinformatics. 2023 Feb 20;24(1):55. doi: 10.1186/s12859-023-05179-2.
6
BLTSA: pseudotime prediction for single cells by branched local tangent space alignment.
Bioinformatics. 2023 Feb 3;39(2). doi: 10.1093/bioinformatics/btad054.
7
scShaper: an ensemble method for fast and accurate linear trajectory inference from single-cell RNA-seq data.
Bioinformatics. 2022 Feb 7;38(5):1328-1335. doi: 10.1093/bioinformatics/btab831.
10
Data-driven selection of analysis decisions in single-cell RNA-seq trajectory inference.
bioRxiv. 2023 Dec 19:2023.12.18.572214. doi: 10.1101/2023.12.18.572214.

本文引用的文献

1
Differential abundance testing on single-cell data using k-nearest neighbor graphs.
Nat Biotechnol. 2022 Feb;40(2):245-253. doi: 10.1038/s41587-021-01033-z. Epub 2021 Sep 30.
2
Detection of differentially abundant cell subpopulations in scRNA-seq data.
Proc Natl Acad Sci U S A. 2021 Jun 1;118(22). doi: 10.1073/pnas.2100293118.
4
Molecular estimation of neurodegeneration pseudotime in older brains.
Nat Commun. 2020 Nov 13;11(1):5781. doi: 10.1038/s41467-020-19622-y.
5
Multi-Omics Resolves a Sharp Disease-State Shift between Mild and Moderate COVID-19.
Cell. 2020 Dec 10;183(6):1479-1495.e20. doi: 10.1016/j.cell.2020.10.037. Epub 2020 Oct 28.
6
Elevated Calprotectin and Abnormal Myeloid Cell Subsets Discriminate Severe from Mild COVID-19.
Cell. 2020 Sep 17;182(6):1401-1418.e18. doi: 10.1016/j.cell.2020.08.002. Epub 2020 Aug 5.
7
Severe COVID-19 Is Marked by a Dysregulated Myeloid Cell Compartment.
Cell. 2020 Sep 17;182(6):1419-1440.e23. doi: 10.1016/j.cell.2020.08.001. Epub 2020 Aug 5.
8
Systems biological assessment of immunity to mild versus severe COVID-19 infection in humans.
Science. 2020 Sep 4;369(6508):1210-1220. doi: 10.1126/science.abc6261. Epub 2020 Aug 11.
9
Single-Cell Sequencing of Peripheral Mononuclear Cells Reveals Distinct Immune Response Landscapes of COVID-19 and Influenza Patients.
Immunity. 2020 Sep 15;53(3):685-696.e3. doi: 10.1016/j.immuni.2020.07.009. Epub 2020 Jul 19.
10
Deep immune profiling of COVID-19 patients reveals distinct immunotypes with therapeutic implications.
Science. 2020 Sep 4;369(6508). doi: 10.1126/science.abc8511. Epub 2020 Jul 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验