Suppr超能文献

用于具有多个单细胞 RNA-seq 样本的差异伪时间分析的统计框架。

A statistical framework for differential pseudotime analysis with multiple single-cell RNA-seq samples.

机构信息

Department of Biostatistics, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA.

Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, 10032, USA.

出版信息

Nat Commun. 2023 Nov 10;14(1):7286. doi: 10.1038/s41467-023-42841-y.

Abstract

Pseudotime analysis with single-cell RNA-sequencing (scRNA-seq) data has been widely used to study dynamic gene regulatory programs along continuous biological processes. While many methods have been developed to infer the pseudotemporal trajectories of cells within a biological sample, it remains a challenge to compare pseudotemporal patterns with multiple samples (or replicates) across different experimental conditions. Here, we introduce Lamian, a comprehensive and statistically-rigorous computational framework for differential multi-sample pseudotime analysis. Lamian can be used to identify changes in a biological process associated with sample covariates, such as different biological conditions while adjusting for batch effects, and to detect changes in gene expression, cell density, and topology of a pseudotemporal trajectory. Unlike existing methods that ignore sample variability, Lamian draws statistical inference after accounting for cross-sample variability and hence substantially reduces sample-specific false discoveries that are not generalizable to new samples. Using both real scRNA-seq and simulation data, including an analysis of differential immune response programs between COVID-19 patients with different disease severity levels, we demonstrate the advantages of Lamian in decoding cellular gene expression programs in continuous biological processes.

摘要

基于单细胞 RNA 测序 (scRNA-seq) 数据的伪时间分析已被广泛用于研究连续生物过程中动态的基因调控程序。虽然已经开发了许多方法来推断生物样本中细胞的伪时间轨迹,但比较多个样本(或重复)在不同实验条件下的伪时间模式仍然是一个挑战。在这里,我们介绍了 Lamian,这是一个全面而严格统计学的计算框架,用于差异多样本伪时间分析。Lamian 可用于识别与样本协变量相关的生物过程变化,例如不同的生物条件,同时调整批次效应,并检测基因表达、细胞密度和伪时间轨迹拓扑的变化。与忽略样本可变性的现有方法不同,Lamian 在考虑跨样本可变性后进行统计推断,从而大大减少了特定于样本的、不可推广到新样本的假阳性发现。使用真实的 scRNA-seq 和模拟数据,包括对不同疾病严重程度的 COVID-19 患者之间的免疫反应程序差异进行分析,我们展示了 Lamian 在解码连续生物过程中的细胞基因表达程序方面的优势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/524c/10638410/6398ccae3435/41467_2023_42841_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验