Department of Computer Science, University of Engineering and Technology, Taxila 47080, Pakistan.
Department of Electronic Engineering, Jeju National University, Jeju 63243, Korea.
Sensors (Basel). 2021 Jul 1;21(13):4527. doi: 10.3390/s21134527.
Restricted abilities of mobile devices in terms of storage, computation, time, energy supply, and transmission causes issues related to energy optimization and time management while processing tasks on mobile phones. This issue pertains to multifarious mobile device-related dimensions, including mobile cloud computing, fog computing, and edge computing. On the contrary, mobile devices' dearth of storage and processing power originates several issues for optimal energy and time management. These problems intensify the process of task retaining and offloading on mobile devices. This paper presents a novel task scheduling algorithm that addresses energy consumption and time execution by proposing an energy-efficient dynamic decision-based method. The proposed model quickly adapts to the cloud computing tasks and energy and time computation of mobile devices. Furthermore, we present a novel task scheduling server that performs the offloading computation process on the cloud, enhancing the mobile device's decision-making ability and computational performance during task offloading. The process of task scheduling harnesses the proposed empirical algorithm. The outcomes of this study enable effective task scheduling wherein energy consumption and task scheduling reduces significantly.
移动设备在存储、计算、时间、能源供应和传输方面的能力有限,这导致在移动电话上处理任务时涉及到与能源优化和时间管理相关的问题。这个问题涉及到多种与移动设备相关的方面,包括移动云计算、雾计算和边缘计算。另一方面,移动设备存储和处理能力的不足为最佳能源和时间管理带来了一些问题。这些问题加剧了任务在移动设备上的保留和卸载过程。本文提出了一种新的任务调度算法,通过提出一种节能的基于动态决策的方法来解决能源消耗和时间执行问题。所提出的模型可以快速适应云计算任务以及移动设备的能源和时间计算。此外,我们还提出了一种新的任务调度服务器,它在云中执行卸载计算过程,提高了移动设备在任务卸载过程中的决策能力和计算性能。任务调度过程利用了所提出的经验算法。该研究的结果实现了有效的任务调度,其中能源消耗和任务调度显著减少。