Suppr超能文献

铜配合物的四面体和五配位配体对 O 演化的作用机制研究。

Mechanistic Insight into the O Evolution Catalyzed by Copper Complexes with Tetra- and Pentadentate Ligands.

机构信息

Department of Chemistry, Indian Institute of Technology Hyderabad, Sangareddy 502285, Telangana, India.

出版信息

J Phys Chem A. 2021 Jul 29;125(29):6461-6473. doi: 10.1021/acs.jpca.1c06008. Epub 2021 Jul 20.

Abstract

The mononuclear complexes ([(bztpen)Cu] (BF) (bztpen = -benzyl-,','-tris (pyridin-2-yl methyl ethylenediamine))) and ([(dbzbpen)Cu(OH)] (BF) (dbzbpen = ,'-dibenzyl-,'-bis(pyridin-2-ylmethyl) ethylenediamine)) have been reported as water oxidation catalysts in basic medium (pH = 11.5). We explore the O evolution process catalyzed by these copper catalysts with various ligands (L) by applying the first-principles molecular dynamics simulations. First, the oxidation of catalysts to the metal-oxo intermediates [LCu(O)] occurs through the proton-coupled electron transfer (PCET) process. These intermediates are involved in the oxygen-oxygen bond formation through the water-nucleophilic addition process. Here, we have considered two types of oxygen-oxygen bond formation. The first one is the transfer of the hydroxide of the water molecule to the Cu═O moiety; the proton transfer to the solvent leads to the formation of the peroxide complex ([LCu(OOH)]). The other is the formation of the hydrogen peroxide complex ([LCu(HOOH)]) by the transfer of proton and hydroxide of the water molecule to the metal-oxo intermediate. The formation of the peroxide complex requires less activation free energy than hydrogen peroxide formation for both catalysts. We found two transition states in the well-tempered metadynamics simulations: one for proton transfer and another for hydroxide transfer. In both cases, the proton transfer requires higher free energy. Following the formation of the oxygen-oxygen bond, we study the release of the dioxygen molecule. The formed peroxide and hydrogen peroxide complexes are converted into the superoxide complex ([LCu(OO)]) through the transfer of proton, electron, and PCET processes. The superoxide complex releases an oxygen molecule upon the addition of a water molecule. The free energy of activation for the release of the dioxygen molecule is lesser than that of the oxygen-oxygen bond formation. When we observe the entire water oxidation process, the oxygen-oxygen bond formation is the rate-determining step. We calculated the rates of reaction by using the Eyring equation and found them to be close to the experimental values.

摘要

单核配合物((bztpen)Cu(bztpen=-苄基-,' - 三(吡啶-2-基甲基乙基二胺))和(dbzbpen)Cu(OH)(dbzbpen=-二苄基-,' - 双(吡啶-2-基甲基)乙基二胺))已被报道为碱性介质(pH = 11.5)中水解的催化剂。我们通过应用第一性原理分子动力学模拟,研究了这些具有不同配体(L)的铜催化剂催化的 O 演化过程。首先,催化剂氧化为金属-氧中间体[LCu(O)]通过质子耦合电子转移(PCET)过程发生。这些中间体通过水分子的亲核加成过程参与氧-氧键的形成。在这里,我们考虑了两种类型的氧-氧键形成。第一种是水分子的氢氧化物转移到 Cu = O 部分;质子转移到溶剂导致过氧配合物([LCu(OOH)])的形成。另一种是质子和水分子的氢氧化物转移到金属-氧中间体,形成过氧化氢配合物([LCu(HOOH)])。对于两种催化剂,过氧配合物的形成所需的活化自由能均小于过氧化氢的形成。我们在温和的元动力学模拟中发现了两个过渡态:一个用于质子转移,另一个用于氢氧化物转移。在这两种情况下,质子转移需要更高的自由能。在氧-氧键形成之后,我们研究了氧气分子的释放。形成的过氧和过氧化氢配合物通过质子、电子和 PCET 过程的转移转化为超氧配合物([LCu(OO)])。超氧配合物在添加水分子后释放出一个氧气分子。释放氧气分子的活化自由能小于氧-氧键形成的自由能。当我们观察整个水氧化过程时,氧-氧键的形成是决定步骤。我们通过 Eyring 方程计算了反应速率,并发现它们接近实验值。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验