Department of Pediatrics, University of Virginia Children's Hospital, Charlottesville, Virginia.
School of Computing, Informatics, Decision Systems Engineering, Arizona State University, Tempe, Arizona.
Am J Physiol Renal Physiol. 2021 Sep 1;321(3):F293-F304. doi: 10.1152/ajprenal.00130.2021. Epub 2021 Jul 20.
Kidney pathologies are often highly heterogeneous. To comprehensively understand kidney structure and pathology, it is critical to develop tools to map tissue microstructure in the context of the whole, intact organ. Magnetic resonance imaging (MRI) can provide a unique, three-dimensional view of the kidney and allows for measurements of multiple pathological features. Here, we developed a platform to systematically render and map gross and microstructural features of the human kidney based on three-dimensional MRI. These features include pyramid number and morphology as well as the associated medulla and cortex. In a subset of these kidneys, we also mapped individual glomeruli and glomerular volumes using cationic ferritin-enhanced MRI to report intrarenal heterogeneity in glomerular density and size. Finally, we rendered and measured regions of nephron loss due to pathology and individual glomerular volumes in each pyramidal unit. This work provides new tools to comprehensively evaluate the kidney across scales, with potential applications in anatomic and physiological research, transplant allograft evaluation, biomarker development, biopsy guidance, and therapeutic monitoring. These image rendering and analysis tools could eventually impact the field of transplantation medicine to improve longevity matching of donor allografts and recipients and reduce discard rates through the direct assessment of donor kidneys. We report the application of cutting-edge image analysis approaches to characterize the pyramidal geometry, glomerular microstructure, and heterogeneity of the whole human kidney imaged using MRI. This work establishes a framework to improve the detection of microstructural pathology to potentially facilitate disease monitoring or transplant evaluation in the individual kidney.
肾脏病变通常具有高度异质性。为了全面了解肾脏结构和病理,开发能够在整体完整器官背景下对组织微观结构进行映射的工具至关重要。磁共振成像 (MRI) 可以提供肾脏的独特三维视图,并允许对多种病理特征进行测量。在这里,我们开发了一个基于三维 MRI 系统地呈现和映射人类肾脏大体和微观结构特征的平台。这些特征包括锥体数量和形态以及相关的髓质和皮质。在这些肾脏的一部分中,我们还使用阳离子铁蛋白增强 MRI 绘制了单个肾小球及其体积,以报告肾小球密度和大小的肾内异质性。最后,我们呈现并测量了由于病变导致的肾单位损失和每个锥体单位中单个肾小球的体积。这项工作提供了全面评估肾脏不同尺度的新工具,具有在解剖学和生理学研究、移植同种异体评估、生物标志物开发、活检指导和治疗监测等方面的潜在应用。这些图像呈现和分析工具最终可能会影响移植医学领域,通过直接评估供体肾脏,提高供体同种异体的寿命匹配和降低丢弃率。我们报告了应用前沿的图像分析方法来描述使用 MRI 成像的整个人类肾脏的锥体几何形状、肾小球微观结构和异质性。这项工作建立了一个框架,以提高对微观结构病理学的检测能力,从而有可能促进个体肾脏的疾病监测或移植评估。
Am J Physiol Renal Physiol. 2021-9-1
Am J Physiol Renal Physiol. 2022-11-1
Am J Physiol Renal Physiol. 2011-3-16
Am J Physiol Renal Physiol. 2014-3-19
Am J Physiol Renal Physiol. 2017-11-1
Am J Physiol Renal Physiol. 2016-6-1
Am J Physiol Renal Physiol. 2019-7-24
Am J Physiol Renal Physiol. 2017-9-1
Am J Physiol Renal Physiol. 2013-3-20
Clin Kidney J. 2023-4-24
Anat Rec (Hoboken). 2025-4
IEEE Trans Biomed Eng. 2021-9
Am J Physiol Renal Physiol. 2021-2-1
Am J Kidney Dis. 2021-1
Nephrol Dial Transplant. 2020-7-1
Nephrol Dial Transplant. 2020-6-1
Anat Rec (Hoboken). 2020-10