Suppr超能文献

使用双阈值约束自适应尺度的小blob 检测器。

Small Blob Detector Using Bi-Threshold Constrained Adaptive Scales.

出版信息

IEEE Trans Biomed Eng. 2021 Sep;68(9):2654-2665. doi: 10.1109/TBME.2020.3046252. Epub 2021 Aug 23.

Abstract

Recent advances in medical imaging technology bring great promises for medicine practices. Imaging biomarkers are discovered to inform disease diagnosis, prognosis, and treatment assessment. Detecting and segmenting objects from images are often the first steps in quantitative measurement of these biomarkers. The challenges of detecting objects in images, particularly small objects known as blobs, include low image resolution, image noise and overlap among the blobs. This research proposes a Bi-Threshold Constrained Adaptive Scale (BTCAS) blob detector to uncover the relationship between the U-Net threshold and the Difference of Gaussian (DoG) scale to derive a multi-threshold, multi-scale small blob detector. With lower and upper bounds on the probability thresholds from U-Net, two binarized maps of the distance are rendered between blob centers. Each blob is transformed to a DoG space with an adaptively identified local optimum scale. A Hessian convexity map is rendered using the adaptive scale, and the under-segmentation typical of the U-Net is resolved. To validate the performance of the proposed BTCAS, a 3D simulated dataset (n = 20) of blobs, a 3D MRI dataset of human kidneys and a 3D MRI dataset of mouse kidneys, are studied. BTCAS is compared against four state-of-the-art methods: HDoG, U-Net with standard thresholding, U-Net with optimal thresholding, and UH-DoG using precision, recall, F-score, Dice and IoU. We conclude that BTCAS statistically outperforms the compared detectors.

摘要

医学成像技术的最新进展为医学实践带来了巨大的希望。成像生物标志物被发现可用于疾病诊断、预后和治疗评估。从图像中检测和分割对象通常是对这些生物标志物进行定量测量的第一步。从图像中检测对象(特别是称为斑点的小对象)的挑战包括图像分辨率低、图像噪声和斑点重叠。这项研究提出了一种双阈值约束自适应尺度(BTCAS)斑点检测器,以揭示 U-Net 阈值与高斯差分(DoG)尺度之间的关系,从而得出多阈值、多尺度的小斑点检测器。通过 U-Net 的概率阈值的下限和上限,在斑点中心之间呈现两个距离的二值化图。每个斑点都转换为具有自适应识别的局部最优尺度的 DoG 空间。使用自适应尺度呈现 Hessian 凸性图,并解决 U-Net 中常见的欠分割问题。为了验证所提出的 BTCAS 的性能,研究了一个 3D 模拟斑点数据集(n=20)、一个 3D MRI 人肾数据集和一个 3D MRI 鼠标肾数据集。将 BTCAS 与四种最先进的方法进行了比较:HDoG、具有标准阈值的 U-Net、具有最佳阈值的 U-Net 和使用精度、召回率、F 分数、Dice 和 IoU 的 UH-DoG。我们得出结论,BTCAS 在统计学上优于比较检测器。

相似文献

1
Small Blob Detector Using Bi-Threshold Constrained Adaptive Scales.使用双阈值约束自适应尺度的小blob 检测器。
IEEE Trans Biomed Eng. 2021 Sep;68(9):2654-2665. doi: 10.1109/TBME.2020.3046252. Epub 2021 Aug 23.

本文引用的文献

4
Dynamic Residual Dense Network for Image Denoising.用于图像去噪的动态残差密集网络
Sensors (Basel). 2019 Sep 3;19(17):3809. doi: 10.3390/s19173809.
6
7
Deep Residual Inception Encoder-Decoder Network for Medical Imaging Synthesis.基于深度残差 Inception 编解码网络的医学影像合成
IEEE J Biomed Health Inform. 2020 Jan;24(1):39-49. doi: 10.1109/JBHI.2019.2912659. Epub 2019 Apr 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验