视神经神经干细胞移植。

Optic Nerve Engraftment of Neural Stem Cells.

机构信息

Hamilton Glaucoma Center, Shiley Eye Institute and Viterbi Family Department of Ophthalmology, University of California San Diego, La Jolla, California, United States.

Department of Neurosciences, University of California San Diego, La Jolla, California, United States.

出版信息

Invest Ophthalmol Vis Sci. 2021 Jul 1;62(9):30. doi: 10.1167/iovs.62.9.30.

Abstract

PURPOSE

To evaluate the integrative potential of neural stem cells (NSCs) with the visual system and characterize effects on the survival and axonal regeneration of axotomized retinal ganglion cells (RGCs).

METHODS

For in vitro studies, primary, postnatal rat RGCs were directly cocultured with human NSCs or cultured in NSC-conditioned media before their survival and neurite outgrowth were assessed. For in vivo studies, human NSCs were transplanted into the transected rat optic nerve, and immunohistology of the retina and optic nerve was performed to evaluate RGC survival, RGC axon regeneration, and NSC integration with the injured visual system.

RESULTS

Increased neurite outgrowth was observed in RGCs directly cocultured with NSCs. NSC-conditioned media demonstrated a dose-dependent effect on RGC survival and neurite outgrowth in culture. NSCs grafted into the lesioned optic nerve modestly improved RGC survival following an optic nerve transection (593 ± 164 RGCs/mm2 vs. 199 ± 58 RGCs/mm2; P < 0.01). Additionally, RGC axonal regeneration following an optic nerve transection was modestly enhanced by NSCs transplanted at the lesion site (61.6 ± 8.5 axons vs. 40.3 ± 9.1 axons, P < 0.05). Transplanted NSCs also differentiated into neurons, received synaptic inputs from regenerating RGC axons, and extended axons along the transected optic nerve to incorporate with the visual system.

CONCLUSIONS

Human NSCs promote the modest survival and axonal regeneration of axotomized RGCs that is partially mediated by diffusible NSC-derived factors. Additionally, NSCs integrate with the injured optic nerve and have the potential to form neuronal relays to restore retinofugal connections.

摘要

目的

评估神经干细胞(NSC)与视觉系统的整合潜能,并研究其对切断的视网膜神经节细胞(RGC)存活和轴突再生的影响。

方法

在体外研究中,直接将原代培养的新生大鼠 RGC 与人类 NSC 共培养,或在 NSC 条件培养基中培养后,评估其存活和突起生长情况。在体内研究中,将人 NSC 移植到切断的大鼠视神经中,通过对视网膜和视神经进行免疫组织化学分析,评估 RGC 存活、RGC 轴突再生以及 NSC 与损伤视觉系统的整合情况。

结果

与 NSC 直接共培养的 RGC 观察到突起生长增加。NSC 条件培养基对培养中的 RGC 存活和突起生长具有剂量依赖性影响。移植到损伤视神经中的 NSC 可适度改善视神经切断后 RGC 的存活(593±164 RGCs/mm2 比 199±58 RGCs/mm2;P<0.01)。此外,移植到损伤部位的 NSC 也可适度增强视神经切断后的 RGC 轴突再生(61.6±8.5 个轴突比 40.3±9.1 个轴突,P<0.05)。移植的 NSC 还分化为神经元,接收来自再生 RGC 轴突的突触输入,并沿切断的视神经延伸轴突,与视觉系统整合。

结论

人类 NSC 促进切断的 RGC 适度存活和轴突再生,部分是由 NSC 衍生的可扩散因子介导的。此外,NSC 与损伤的视神经整合,并有可能形成神经元中继以恢复视网膜传出连接。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8521/8300061/8da2f38ef123/iovs-62-9-30-f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索