文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

与节段性单亲二倍体相关的临床意义及机制。

Clinical significance and mechanisms associated with segmental UPD.

作者信息

Papenhausen Peter R, Kelly Carla A, Harris Samuel, Caldwell Samantha, Schwartz Stuart, Penton Andrea

机构信息

Cytogenetics Department, Laboratory Corporation of America, Research Triangle Park, NC, 27709, USA.

Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA.

出版信息

Mol Cytogenet. 2021 Jul 20;14(1):38. doi: 10.1186/s13039-021-00555-0.


DOI:10.1186/s13039-021-00555-0
PMID:34284807
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8290618/
Abstract

Whole chromosome uniparental disomy (UPD) has been well documented with mechanisms largely understood. However, the etiology of segmental limited UPD (segUPD) is not as clear. In a 10-year period of confirming (> 300) cases of whole chromosome UPD, we identified 86 segmental cases in both prenatal and postnatal samples. Thirty-two of these cases showed mosaic segmental UPD at 11p due to somatic selection associated with Beckwith-Wiedemann syndrome. This study focuses on apparent mechanisms associated with the remaining cases, many of which appear to represent corrections of genomic imbalance such as deletions and derivative chromosomes. In some cases, segmental UPD was associated with the generation of additional genomic imbalance while in others it apparently resulted in restoration of euploidy. Multiple tests utilizing noninvasive prenatal testing (NIPT), chorionic villus sampling (CVS) and amniotic fluid samples from the same pregnancy revealed temporal evidence of correction and a "hotspot" at 1p. Although in many cases the genomic imbalance was dosage "repaired" in the analyzed tissue, clinical effects could be sustained due to early developmental effects of the original imbalance or due to its continued existence in other tissues. In addition, if correction did not occur in the gametes there would be recurrence risks for the offspring of those individuals. Familial microarray allele patterns are presented that differentiate lack of gamete correction from somatic derived gonadal mosaicism. These results suggest that the incidence of segUPD mediated correction is underestimated and may explain the etiology of some clinical phenotypes which are undetected by routine microarray analysis and many exome sequencing studies.

摘要

全染色体单亲二体性(UPD)已有充分记录,其机制也基本为人所理解。然而,节段性局限性UPD(segUPD)的病因尚不清楚。在长达10年的全染色体UPD确诊(>300例)病例研究中,我们在产前和产后样本中识别出86例节段性病例。其中32例因与贝克威思-维德曼综合征相关的体细胞选择而在11p处表现为嵌合节段性UPD。本研究聚焦于与其余病例相关的明显机制,其中许多似乎代表了基因组失衡(如缺失和衍生染色体)的纠正。在某些情况下,节段性UPD与额外基因组失衡的产生有关,而在其他情况下,它显然导致了整倍体的恢复。利用同一妊娠的无创产前检测(NIPT)、绒毛取样(CVS)和羊水样本进行的多项检测揭示了纠正的时间证据以及1p处的一个“热点”。尽管在许多情况下,分析组织中的基因组失衡在剂量上得到了“修复”,但由于原始失衡的早期发育影响或其在其他组织中的持续存在,临床影响可能会持续存在。此外,如果配子中未发生纠正,这些个体的后代将存在复发风险。文中展示了家族性微阵列等位基因模式,以区分配子未纠正与体细胞来源的性腺嵌合现象。这些结果表明,segUPD介导的纠正发生率被低估了,这可能解释了一些临床表型的病因,而这些表型在常规微阵列分析和许多外显子组测序研究中未被检测到。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19d1/8290618/512c899880bd/13039_2021_555_Fig19_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19d1/8290618/cb15d257b38e/13039_2021_555_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19d1/8290618/76a7b30994e7/13039_2021_555_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19d1/8290618/c7d45a45125c/13039_2021_555_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19d1/8290618/1976d14faa96/13039_2021_555_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19d1/8290618/7e12e951f0f7/13039_2021_555_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19d1/8290618/795e938b050b/13039_2021_555_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19d1/8290618/3d4a04db9c11/13039_2021_555_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19d1/8290618/6e49462c9886/13039_2021_555_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19d1/8290618/3d58d89128cb/13039_2021_555_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19d1/8290618/5b292629684c/13039_2021_555_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19d1/8290618/39df8ca351dd/13039_2021_555_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19d1/8290618/20f9b716057d/13039_2021_555_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19d1/8290618/195c5aea7352/13039_2021_555_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19d1/8290618/4af9a25d4026/13039_2021_555_Fig14_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19d1/8290618/85616545dec9/13039_2021_555_Fig15_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19d1/8290618/12a021654a82/13039_2021_555_Fig16_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19d1/8290618/f123eea0fda1/13039_2021_555_Fig17_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19d1/8290618/3f97e21db09a/13039_2021_555_Fig18_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19d1/8290618/512c899880bd/13039_2021_555_Fig19_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19d1/8290618/cb15d257b38e/13039_2021_555_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19d1/8290618/76a7b30994e7/13039_2021_555_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19d1/8290618/c7d45a45125c/13039_2021_555_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19d1/8290618/1976d14faa96/13039_2021_555_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19d1/8290618/7e12e951f0f7/13039_2021_555_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19d1/8290618/795e938b050b/13039_2021_555_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19d1/8290618/3d4a04db9c11/13039_2021_555_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19d1/8290618/6e49462c9886/13039_2021_555_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19d1/8290618/3d58d89128cb/13039_2021_555_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19d1/8290618/5b292629684c/13039_2021_555_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19d1/8290618/39df8ca351dd/13039_2021_555_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19d1/8290618/20f9b716057d/13039_2021_555_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19d1/8290618/195c5aea7352/13039_2021_555_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19d1/8290618/4af9a25d4026/13039_2021_555_Fig14_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19d1/8290618/85616545dec9/13039_2021_555_Fig15_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19d1/8290618/12a021654a82/13039_2021_555_Fig16_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19d1/8290618/f123eea0fda1/13039_2021_555_Fig17_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19d1/8290618/3f97e21db09a/13039_2021_555_Fig18_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19d1/8290618/512c899880bd/13039_2021_555_Fig19_HTML.jpg

相似文献

[1]
Clinical significance and mechanisms associated with segmental UPD.

Mol Cytogenet. 2021-7-20

[2]
Complex and segmental uniparental disomy (UPD): review and lessons from rare chromosomal complements.

J Med Genet. 2001-8

[3]
Mitotic recombination and uniparental disomy in Beckwith-Wiedemann syndrome.

Genomics. 2007-5

[4]
Identification of consensus motifs associated with mitotic recombination and clinical characteristics in patients with paternal uniparental isodisomy of chromosome 11.

Hum Mol Genet. 2016-4-1

[5]
Complex and segmental uniparental disomy updated.

J Med Genet. 2008-9

[6]
Prenatal testing for uniparental disomy: indications and clinical relevance.

Ultrasound Obstet Gynecol. 2008-1

[7]
Somatic mosaicism for partial paternal isodisomy in Wiedemann-Beckwith syndrome: a post-fertilization event.

Eur J Hum Genet. 1993

[8]
Uniparental disomy analysis in trios using genome-wide SNP array and whole-genome sequencing data imply segmental uniparental isodisomy in general populations.

Gene. 2012-10-27

[9]
Prenatal diagnosis of uniparental disomy 15 following trisomy 15 mosaicism.

Prenat Diagn. 1996-4

[10]
Mosaic uniparental disomy in Beckwith-Wiedemann syndrome.

J Med Genet. 1994-10

引用本文的文献

[1]
Performance and clinical implications of non-invasive prenatal testing for rare chromosomal abnormalities: a retrospective study of 94,125 cases.

Front Mol Biosci. 2025-8-20

[2]
Biliverdinuria Caused by Exonic Deletions in Two Dogs with Green Urine.

Genes (Basel). 2024-11-30

[3]
Uniparental IsoDisomy: a case study on a new mechanism of Friedreich ataxia.

Eur J Hum Genet. 2025-1

[4]
An Incidental Detection of a Rare UPD in SNP-Array Based PGT-SR: A Case Report.

Reprod Sci. 2024-9

[5]
Case Report: Decrypting an interchromosomal insertion associated with Marfan's syndrome: how optical genome mapping emphasizes the morbid burden of copy-neutral variants.

Front Genet. 2023-9-21

本文引用的文献

[1]
Uniparental disomy in a population of 32,067 clinical exome trios.

Genet Med. 2021-6

[2]
Deletion rescue resulting in segmental homozygosity: A mechanism underlying discordant NIPT results.

Am J Med Genet A. 2020-11

[3]
The involvement of U-type dicentric chromosomes in the formation of terminal deletions with or without adjacent inverted duplications.

Hum Genet. 2020-6-2

[4]
Diagnostic testing for uniparental disomy: a points to consider statement from the American College of Medical Genetics and Genomics (ACMG).

Genet Med. 2020-7

[5]
Accurate detection of clinically relevant uniparental disomy from exome sequencing data.

Genet Med. 2020-4

[6]
Characterization of Prevalence and Health Consequences of Uniparental Disomy in Four Million Individuals from the General Population.

Am J Hum Genet. 2019-10-10

[7]
Two siblings with 11qter deletion syndrome that had been rescued in their mother by uniparental disomy.

Eur J Med Genet. 2019-3

[8]
Insight into the mechanisms and consequences of recurrent telomere capture associated with a sub-telomeric deletion.

Chromosome Res. 2018-9

[9]
Patterns of homozygosity in patients with uniparental disomy: detection rate and suggested reporting thresholds for SNP microarrays.

Genet Med. 2018-3-22

[10]
A case with concurrent duplication, triplication, and uniparental isodisomy at 1q42.12-qter supporting microhomology-mediated break-induced replication model for replicative rearrangements.

Mol Cytogenet. 2017-4-28

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索