Suppr超能文献

用于生物膜设计的蓝光可切换细菌粘附的实现

Implementation of Blue Light Switchable Bacterial Adhesion for Design of Biofilms.

作者信息

Chen Fei, Wegner Seraphine V

机构信息

Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.

出版信息

Bio Protoc. 2018 Jun 20;8(12):e2893. doi: 10.21769/BioProtoc.2893.

Abstract

Control of bacterial adhesions to a substrate with high precision in space and time is important to form a well-defined biofilm. Here, we present a method to engineer bacteria such that they adhere specifically to substrates under blue light through the photoswitchable proteins nMag and pMag. This provides exquisite spatiotemporal remote control over these interactions. The engineered bacteria express pMag protein on the surface so that they can adhere to substrates with nMag protein immobilization under blue light, and reversibly detach in the dark. This process can be repeatedly turned on and off. In addition, the bacterial adhesion property can be adjusted by expressing different pMag proteins on the bacterial surface and altering light intensity. This protocol provides light switchable, reversible and tunable control of bacteria adhesion with high spatial and temporal resolution, which enables us to pattern bacteria on substrates with great flexibility.

摘要

在空间和时间上高精度控制细菌与底物的粘附对于形成明确的生物膜很重要。在此,我们提出一种改造细菌的方法,使它们通过光开关蛋白nMag和pMag在蓝光下特异性粘附到底物上。这提供了对这些相互作用的精确时空远程控制。工程细菌在表面表达pMag蛋白,以便它们在蓝光下能与固定有nMag蛋白的底物粘附,并在黑暗中可逆地分离。这个过程可以反复开启和关闭。此外,通过在细菌表面表达不同的pMag蛋白并改变光强度,可以调节细菌的粘附特性。该方案提供了具有高空间和时间分辨率的光控、可逆且可调的细菌粘附控制,这使我们能够非常灵活地在底物上对细菌进行图案化。

相似文献

1
Implementation of Blue Light Switchable Bacterial Adhesion for Design of Biofilms.
Bio Protoc. 2018 Jun 20;8(12):e2893. doi: 10.21769/BioProtoc.2893.
2
Blue Light Switchable Bacterial Adhesion as a Key Step toward the Design of Biofilms.
ACS Synth Biol. 2017 Dec 15;6(12):2170-2174. doi: 10.1021/acssynbio.7b00197. Epub 2017 Aug 17.
3
Blue-Light-Switchable Bacterial Cell-Cell Adhesions Enable the Control of Multicellular Bacterial Communities.
ACS Synth Biol. 2020 May 15;9(5):1169-1180. doi: 10.1021/acssynbio.0c00054. Epub 2020 Apr 15.
5
An AND-Gated Drug and Photoactivatable Cre- System for Spatiotemporal Control in Cell-Based Therapeutics.
ACS Synth Biol. 2019 Oct 18;8(10):2359-2371. doi: 10.1021/acssynbio.9b00175. Epub 2019 Oct 8.
7
Assembly Domain-Based Optogenetic System for the Efficient Control of Cellular Signaling.
ACS Synth Biol. 2017 Jun 16;6(6):1086-1095. doi: 10.1021/acssynbio.7b00022. Epub 2017 Mar 3.
8
Independent Control over Multiple Cell Types in Space and Time Using Orthogonal Blue and Red Light Switchable Cell Interactions.
Adv Sci (Weinh). 2018 Jun 17;5(8):1800446. doi: 10.1002/advs.201800446. eCollection 2018 Aug.
9
Biofilm Lithography enables high-resolution cell patterning via optogenetic adhesin expression.
Proc Natl Acad Sci U S A. 2018 Apr 3;115(14):3698-3703. doi: 10.1073/pnas.1720676115. Epub 2018 Mar 19.
10
High-resolution Patterned Biofilm Deposition Using pDawn-Ag43.
J Vis Exp. 2018 Oct 23(140):58625. doi: 10.3791/58625.

引用本文的文献

1
Blue Light Signaling Regulates Escherichia coli W1688 Biofilm Formation and l-Threonine Production.
Microbiol Spectr. 2022 Oct 26;10(5):e0246022. doi: 10.1128/spectrum.02460-22. Epub 2022 Sep 27.

本文引用的文献

1
Controlling the activity of quorum sensing autoinducers with light.
Chem Sci. 2015 Jun 1;6(6):3593-3598. doi: 10.1039/c5sc00215j. Epub 2015 Apr 27.
2
Blue Light Switchable Bacterial Adhesion as a Key Step toward the Design of Biofilms.
ACS Synth Biol. 2017 Dec 15;6(12):2170-2174. doi: 10.1021/acssynbio.7b00197. Epub 2017 Aug 17.
3
Photomodulation of bacterial growth and biofilm formation using carbohydrate-based surfactants.
Chem Sci. 2016 Nov 1;7(11):6628-6634. doi: 10.1039/c6sc03020c. Epub 2016 Aug 17.
4
Orthogonal Surface Tags for Whole-Cell Biocatalysis.
Angew Chem Int Ed Engl. 2017 Feb 13;56(8):2183-2186. doi: 10.1002/anie.201609590. Epub 2017 Jan 20.
5
Interspecific Bacterial Interactions are Reflected in Multispecies Biofilm Spatial Organization.
Front Microbiol. 2016 Aug 31;7:1366. doi: 10.3389/fmicb.2016.01366. eCollection 2016.
6
Biofilms: an emergent form of bacterial life.
Nat Rev Microbiol. 2016 Aug 11;14(9):563-75. doi: 10.1038/nrmicro.2016.94.
7
Spatial structure, cooperation and competition in biofilms.
Nat Rev Microbiol. 2016 Sep;14(9):589-600. doi: 10.1038/nrmicro.2016.84. Epub 2016 Jul 25.
8
Programming Surface Chemistry with Engineered Cells.
ACS Synth Biol. 2016 Sep 16;5(9):936-41. doi: 10.1021/acssynbio.6b00037. Epub 2016 Jun 6.
9
Rewiring Gram-Negative Bacteria Cell Surfaces with Bio-Orthogonal Chemistry via Liposome Fusion.
Bioconjug Chem. 2016 Apr 20;27(4):1082-9. doi: 10.1021/acs.bioconjchem.6b00073. Epub 2016 Mar 28.
10
Switching first contact: photocontrol of E. coli adhesion to human cells.
Chem Commun (Camb). 2016 Jan 21;52(6):1254-7. doi: 10.1039/c5cc08884d.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验