Suppr超能文献

在维生素 B 和细菌微隔间依赖的 1,2-丙二醇利用的刺激下,在鼠李糖上的厌氧生长。

Anaerobic Growth of on Rhamnose Is Stimulated by Vitamin B and Bacterial Microcompartment-Dependent 1,2-Propanediol Utilization.

机构信息

Food Microbiology, Wageningen University and Research, Wageningen, The Netherlands.

Laboratory of Biochemistry, Wageningen University and Research, Wageningen, The Netherlands.

出版信息

mSphere. 2021 Aug 25;6(4):e0043421. doi: 10.1128/mSphere.00434-21. Epub 2021 Jul 21.

Abstract

The foodborne pathogen Listeria monocytogenes can form proteinaceous organelles called bacterial microcompartments (BMCs) that optimize the utilization of substrates, such as 1,2-propanediol, and confer an anaerobic growth advantage. Rhamnose is a deoxyhexose sugar abundant in a range of environments, including the human intestine, and can be degraded in anaerobic conditions into 1,2-propanediol, next to acetate and lactate. Rhamnose-derived 1,2-propanediol was found to link with BMCs in some human pathogens such as Salmonella enterica, but the involvement of BMCs in rhamnose metabolism and potential physiological effects on L. monocytogenes are still unknown. In this study, we first test the effect of rhamnose uptake and utilization on anaerobic growth of L. monocytogenes EGDe without or with added vitamin B, followed by metabolic analysis. We show that vitamin B-dependent activation of stimulates metabolism and anaerobic growth of L. monocytogenes EGDe on rhamnose via 1,2-propanediol degradation into 1-propanol and propionate. Transmission electron microscopy of -induced cells shows that BMCs are formed, and additional proteomics experiments confirm expression of BMC shell proteins and enzymes. Finally, we discuss the physiological effects and energy efficiency of L. monocytogenes BMC-driven anaerobic rhamnose metabolism and the impact on competitive fitness in environments such as the human intestine. Listeria monocytogenes is a foodborne pathogen causing severe illness and, as such, it is crucial to understand the molecular mechanisms contributing to its survival strategy and pathogenicity. Rhamnose is a deoxyhexose sugar abundant in a range of environments, including the human intestine, and can be degraded in anaerobic conditions into 1,2-propanediol. In our previous study, the utilization of 1,2-propanediol () in L. monocytogenes was proved to be metabolized in bacterial microcompartments (BMCs), which are self-assembling subcellular proteinaceous structures and analogs of eukaryotic organelles. Here, we show that the vitamin B-dependent activation of stimulates metabolism and anaerobic growth of L. monocytogenes EGDe on rhamnose via BMC-dependent 1,2-propanediol utilization. Combined with metabolic and proteomics analysis, our discussion on the physiological effects and energy efficiency of BMC-driven rhamnose metabolism shed new light to understand the impact on L. monocytogenes competitive fitness in ecosystems such as the human intestine.

摘要

食源性病原体李斯特菌可以形成称为细菌微隔间(BMCs)的蛋白质细胞器,从而优化底物(如 1,2-丙二醇)的利用,并赋予其厌氧生长优势。鼠李糖是一种在多种环境中丰富的去氧己糖,包括人类肠道,并可在厌氧条件下降解为 1,2-丙二醇,旁边是乙酸盐和乳酸盐。在一些人类病原体(如肠炎沙门氏菌)中发现鼠李糖衍生的 1,2-丙二醇与 BMCs 有关联,但 BMCs 在鼠李糖代谢中的参与以及对李斯特菌的潜在生理影响仍不清楚。在这项研究中,我们首先测试了鼠李糖摄取和利用对李斯特菌 EGDe 无维生素 B 或添加维生素 B 的厌氧生长的影响,然后进行了代谢分析。我们表明,维生素 B 依赖性激活 刺激李斯特菌 EGDe 通过 1,2-丙二醇降解为 1-丙醇和丙酸来代谢和厌氧生长在鼠李糖上。诱导细胞的透射电子显微镜显示形成了 BMCs,并且额外的蛋白质组学实验证实了 BMC 壳蛋白和酶的表达。最后,我们讨论了李斯特菌 BMC 驱动的厌氧鼠李糖代谢的生理效应和能量效率及其对人类肠道等环境中竞争适应性的影响。李斯特菌是一种食源性病原体,会导致严重疾病,因此了解有助于其生存策略和致病性的分子机制至关重要。鼠李糖是一种在多种环境中丰富的去氧己糖,包括人类肠道,并可在厌氧条件下降解为 1,2-丙二醇。在我们之前的研究中,已证明李斯特菌中 1,2-丙二醇的利用在细菌微隔间(BMCs)中进行,BMCs 是自组装的亚细胞蛋白质结构,类似于真核细胞器。在这里,我们表明,维生素 B 依赖性激活 刺激李斯特菌 EGDe 通过 BMC 依赖性 1,2-丙二醇利用在鼠李糖上进行代谢和厌氧生长。结合代谢和蛋白质组学分析,我们对 BMC 驱动的鼠李糖代谢的生理效应和能量效率的讨论为理解李斯特菌在人类肠道等生态系统中的竞争适应性的影响提供了新的视角。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63c1/8386454/259e64fa8c97/msphere.00434-21-f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验