Arizona State University, Tempe, AZ, USA.
McGill University, Montreal, Canada.
Prev Sci. 2022 Apr;23(3):378-389. doi: 10.1007/s11121-021-01256-1. Epub 2021 Jul 21.
Science is an inherently cumulative process, and knowledge on a specific topic is organized through synthesis of findings from related studies. Meta-analysis has been the most common statistical method for synthesizing findings from multiple studies in prevention science and other fields. In recent years, Bayesian statistics have been put forth as another way to synthesize findings and have been praised for providing a natural framework for update existing knowledge with new data. This article presents a Bayesian method for cumulative science and describes a SAS macro %SBDS for synthesizing findings from multiple studies or multiple data sets from a single study using three different methods: meta-analysis using raw data, sequential Bayesian data synthesis, and a single-level analysis on pooled data. Sequential Bayesian data synthesis and Bayesian statistics in general are discussed in an accessible manner, and guidelines are provided on how researchers can use the accompanying SAS macro for synthesizing data from their own studies. Four alcohol use studies were used to demonstrate how to apply the three data synthesis methods using the SAS macro.
科学是一个固有的累积过程,特定主题的知识是通过综合相关研究的发现来组织的。元分析一直是预防科学和其他领域综合多项研究结果的最常用统计方法。近年来,贝叶斯统计学被提出作为另一种综合发现的方法,并因其为利用新数据更新现有知识提供了自然框架而受到赞誉。本文介绍了一种用于累积科学的贝叶斯方法,并描述了一个 SAS 宏 %SBDS,用于使用三种不同方法综合多项研究或单个研究中的多个数据集的结果:使用原始数据的元分析、序贯贝叶斯数据综合和汇总数据的单水平分析。以通俗易懂的方式讨论了序贯贝叶斯数据综合和贝叶斯统计,提供了有关研究人员如何使用随附的 SAS 宏来综合自己研究中的数据的指南。使用四个酒精使用研究来说明如何使用 SAS 宏应用这三种数据综合方法。