Department of Psychology, McGill University.
Psychol Trauma. 2024 Jan;16(1):149-157. doi: 10.1037/tra0001439. Epub 2023 Feb 9.
Bayesian methods are growing in popularity among social scientists, due to the significant advantages offered to researchers: namely, intuitive probabilistic interpretations of results. Here, we highlight the benefits of using the Bayesian framework in research where collecting large samples is challenging, specifically: the absence of a requirement of large samples for convergence, and the possibility of building on prior research by including informative priors.
We demonstrate how to fit a single mediator model and impute missing data in the Bayesian framework using the software JAGS via the R package rjags. To this end, we use open-access data to fit a mediation model and calculate the posterior probability that the mediated effect is above a specified criterion.
We replicate the results of the original paper in the Bayesian framework and provide annotated code for mediation analysis in rjags, as well as two additional R packages for Bayesian analysis (brms and rstan) and two additional software packages (SAS and Mplus).
We provide guidelines for reporting and interpreting results obtained in the Bayesian framework, and two extensions to the mediation model are discussed: adding covariates to the model and selecting informative priors. (PsycInfo Database Record (c) 2023 APA, all rights reserved).
贝叶斯方法在社会科学家中间越来越受欢迎,因为它们为研究人员提供了显著的优势:即对结果进行直观的概率解释。在这里,我们强调了在收集大样本具有挑战性的研究中使用贝叶斯框架的好处,特别是:不需要大量样本即可收敛,并且可以通过包含信息先验来利用先前的研究。
我们展示了如何使用 JAGS 软件通过 rjags 包在贝叶斯框架中拟合单中介模型并对缺失数据进行插补。为此,我们使用开放访问数据来拟合中介模型,并计算中介效应超过指定标准的后验概率。
我们在贝叶斯框架中复制了原始论文的结果,并提供了 rjags 中中介分析的注释代码,以及用于贝叶斯分析的另外两个 R 包(brms 和 rstan)以及另外两个软件包(SAS 和 Mplus)。
我们提供了在贝叶斯框架中报告和解释结果的指南,并讨论了中介模型的两个扩展:向模型添加协变量和选择信息先验。(PsycInfo 数据库记录(c)2023 APA,保留所有权利)。