Zichittella Guido, Pérez-Ramírez Javier
Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland.
Angew Chem Int Ed Engl. 2021 Nov 2;60(45):24089-24095. doi: 10.1002/anie.202105851. Epub 2021 Aug 9.
The use of ethane as a platform molecule for the manufacture of polyvinyl chloride (PVC) is a longstanding challenge, which would allow to reduce the raw material costs and CO emissions to produce this plastic. Herein, we discover that rare earth oxychlorides catalyze in a selective (up to 90 %) and stable (>50 h on stream) manner the reaction of ethane and molecular chlorine into 1,2-dichloroethane, which, upon established cracking, will translate into an order of magnitude higher vinyl chloride productivity compared to ethane oxychlorination technologies. In addition, representative europium oxychloride was supported on suitable carriers and was demonstrated to be selective (up to 90 %) and stable (>40 h on stream) in extrudate form. These findings bring the ethane-based production of PVC one step closer to implementation.
将乙烷用作制造聚氯乙烯(PVC)的平台分子是一项长期挑战,这将有助于降低生产这种塑料的原材料成本和二氧化碳排放量。在此,我们发现稀土氯氧化物以选择性(高达90%)和稳定(连续运行>50小时)的方式催化乙烷与分子氯反应生成1,2-二氯乙烷,与乙烷氧氯化技术相比,在既定的裂解过程中,其氯乙烯生产率将提高一个数量级。此外,代表性的氯氧化铕负载在合适的载体上,并被证明以挤出物形式具有选择性(高达90%)和稳定性(连续运行>40小时)。这些发现使基于乙烷的PVC生产向实际应用又迈进了一步。