Li Yuting, Qi Haifeng, Zhu Zihan, Wu Xia, Dummer Nicholas F, Taylor Stuart H, Ma Lei, Yang Xiaofeng, Liu Qinggang, Hutchings Graham J, Huang Yanqiang
State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
University of Chinese Academy of Sciences, Beijing, 100049, China.
Angew Chem Int Ed Engl. 2025 Aug 18;64(34):e202505846. doi: 10.1002/anie.202505846. Epub 2025 Jun 26.
Radical-mediated chlorination of ethane presents a low-carbon alternative for polyvinyl chloride (PVC) synthesis, yet selectivity toward 1,2-dichloroethane remains challenged by uncontrolled over-chlorination. Lanthanum oxychloride (LaOCl) has emerged as a promising catalyst, but its structural dynamics under Cl-rich conditions and the origin of selectivity loss remain elusive. Here, we integrate advanced spectroscopic techniques with theoretical calculations to address this knowledge gap. Our findings unveil a sequential LaOCl → LaCl transformation that dictates product distribution shifting from 1,2-dichloroethane to trichloroethane. Mechanistic insights reveal that surface hydroxyl groups, generated during catalyst chlorination, promote bidentate adsorption of 1,2-dichloroethane via hydrogen-bond networks, thereby activating C─Cl over-chlorination. Additionally, by employing AlO-supported LaCl model catalysts, the size-dependent chlorophilicity of the LaCl species is demonstrated. The bonding of interfacial oxygen with monolayer-dispersed LaCl species generates empty 4f-states above the Fermi level, creating strong Lewis acid sites that stabilize Cl radicals and selectively convert chloroethane to 1,2-dichloroethane. In contrast, aggregated nanoparticles are inactive due to their inability to stabilize chlorine radical. Our findings establish important structure sensitivity in lanthanum-catalyzed chlorination and provide guiding principles for catalyst design, highlighting the importance of stabilizing metastable LaOCl species and modulating surface hydroxyl chemistry to overcome selectivity limitations.
自由基介导的乙烷氯化反应为聚氯乙烯(PVC)合成提供了一种低碳替代方案,然而,对1,2 - 二氯乙烷的选择性仍受到不受控制的过度氯化的挑战。氯氧化镧(LaOCl)已成为一种有前景的催化剂,但其在富氯条件下的结构动力学以及选择性损失的根源仍不清楚。在此,我们将先进的光谱技术与理论计算相结合,以填补这一知识空白。我们的研究结果揭示了LaOCl→LaCl的顺序转变,这决定了产物分布从1,2 - 二氯乙烷向三氯乙烷的转变。机理分析表明,催化剂氯化过程中产生的表面羟基通过氢键网络促进1,2 - 二氯乙烷的双齿吸附,从而激活C─Cl过度氯化。此外,通过使用AlO负载的LaCl模型催化剂,证明了LaCl物种的尺寸依赖性亲氯性。界面氧与单层分散的LaCl物种的键合在费米能级以上产生空的4f态,形成强路易斯酸位点,稳定Cl自由基并选择性地将氯乙烷转化为1,2 - 二氯乙烷。相比之下,聚集的纳米颗粒由于无法稳定氯自由基而无活性。我们的研究结果确立了镧催化氯化反应中重要的结构敏感性,并为催化剂设计提供了指导原则,突出了稳定亚稳LaOCl物种和调节表面羟基化学以克服选择性限制的重要性。