Go Chae Young, Jang Seung Soon, Kim Ki Chul
Computational Materials Design Laboratory, Division of Chemical Engineering, Konkuk University, Seoul 05029, The Republic of Korea.
Computational NanoBio Technology Laboratory, School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.
ACS Appl Mater Interfaces. 2021 Aug 4;13(30):35729-35738. doi: 10.1021/acsami.1c08167. Epub 2021 Jul 21.
In efforts to design organic cathode materials for rechargeable batteries, a fundamental understanding of the redox properties of diverse non-carbon-based functionalities incorporated into 9,10-anthraquinone is lacking despite their potential impact. Herein, a preliminary investigation of the potential of anthraquinones with halogenated nitrogen-based functionalities reveals that the Li-triggered structural collapse observed in the early stage of discharging can be ascribed to the preference toward the strong Lewis acid-base interaction of N-Li-X (X = F or Cl) over the repulsive interaction of the electron-rich N-X bond. A further study of three solutions (, substitution of NX with (i) BX, (ii) NH, and (iii) BH) to the structural decomposition issue highlights four conclusive remarks. First, the replacement of N and/or X with electron-deficient atom(s), such as B and/or H, relieves the repulsive force on the N-X bond without the assistance of Li, and thus, no structural decomposition occurs. Second, the incorporation of BH is verified to be the most beneficial for improving the theoretical performance. Third, all the redox properties are better correlated with electron affinity and solvation energy than the electronegativity of functionality, implying that these key parameters cooperatively contribute to the electrochemical redox potential; additionally, solvation energy plays a crucial role in determining cathodic deactivation. Fourth, the improvement to the Li storage capability of anthraquinone using the third solution can primarily be ascribed to solvation energy remaining at a negative value even after the binding of more Li atoms than the other derivatives.
在设计用于可充电电池的有机阴极材料的过程中,尽管含卤氮基功能团对9,10-蒽醌有潜在影响,但对其氧化还原性质仍缺乏基本了解。在此,对含卤氮基功能团蒽醌潜力的初步研究表明,放电初期观察到的锂引发的结构坍塌可归因于N-Li-X(X = F或Cl)的强路易斯酸碱相互作用优先于富电子N-X键的排斥相互作用。对三种解决结构分解问题的方案(用(i)BX、(ii)NH和(iii)BH取代NX)的进一步研究突出了四点结论性意见。首先,用缺电子原子(如B和/或H)取代N和/或X,在没有锂的情况下减轻了N-X键上的排斥力,因此不会发生结构分解。其次,已证实引入BH对提高理论性能最有益。第三,所有氧化还原性质与电子亲和能和溶剂化能的相关性比功能团的电负性更好,这意味着这些关键参数共同影响电化学氧化还原电位;此外,溶剂化能在决定阴极失活方面起关键作用。第四,使用第三种方案提高蒽醌的锂存储能力,主要可归因于即使在结合比其他衍生物更多的锂原子后,溶剂化能仍保持负值。