Suppr超能文献

基于非负正交图重构的多视图聚类

Multi-View Clustering via Nonnegative and Orthogonal Graph Reconstruction.

作者信息

Shi Shaojun, Nie Feiping, Wang Rong, Li Xuelong

出版信息

IEEE Trans Neural Netw Learn Syst. 2023 Jan;34(1):201-214. doi: 10.1109/TNNLS.2021.3093297. Epub 2023 Jan 5.

Abstract

The goal of multi-view clustering is to partition samples into different subsets according to their diverse features. Previous multi-view clustering methods mainly exist two forms: multi-view spectral clustering and multi-view matrix factorization. Although they have shown excellent performance in many occasions, there are still many disadvantages. For example, multi-view spectral clustering usually needs to perform postprocessing. Multi-view matrix factorization directly decomposes the original data features. When the size of features is large, it encounters the expensive time consumption to decompose these data features thoroughly. Therefore, we proposed a novel multi-view clustering approach. The main advantages include the following three aspects: 1) it searches for a common joint graph across multiple views, which fully explores the hidden structure information by utilizing the compatibility among views; 2) the introduced nonnegative constraint manipulates that the final clustering results can be directly obtained; and 3) straightforwardly decomposing the similarity matrix can transform the eigenvalue factorization in spectral clustering with computational complexity O(n) into the singular value decomposition (SVD) with O(nc) time cost, where n and c , respectively, denote the numbers of samples and classes. Thus, the computational efficiency can be improved. Moreover, in order to learn a better clustering model, we set that the constructed similarity graph approximates each view affinity graph as close as possible by adding the constraint as the initial affinity matrices own. Furthermore, substantial experiments are conducted, which verifies the superiority of the proposed two clustering methods comparing with single-view clustering approaches and state-of-the-art multi-view clustering methods.

摘要

多视图聚类的目标是根据样本的不同特征将其划分为不同的子集。以往的多视图聚类方法主要存在两种形式:多视图谱聚类和多视图矩阵分解。尽管它们在许多情况下都表现出了优异的性能,但仍存在许多缺点。例如,多视图谱聚类通常需要进行后处理。多视图矩阵分解直接对原始数据特征进行分解。当特征规模较大时,要彻底分解这些数据特征会面临高昂的时间消耗。因此,我们提出了一种新颖的多视图聚类方法。其主要优点包括以下三个方面:1)它在多个视图中搜索一个公共的联合图,通过利用视图间的兼容性充分挖掘隐藏的结构信息;2)引入的非负约束使得能够直接获得最终的聚类结果;3)直接分解相似性矩阵可以将谱聚类中计算复杂度为O(n)的特征值分解转化为时间成本为O(nc)的奇异值分解(SVD),其中n和c分别表示样本数和类别数。因此,可以提高计算效率。此外,为了学习更好的聚类模型,我们通过添加约束使得构建的相似性图尽可能接近每个视图的亲和图,因为初始亲和矩阵具有这些特性。此外,进行了大量实验,验证了所提出的两种聚类方法相对于单视图聚类方法和现有多视图聚类方法的优越性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验