Suppr超能文献

通过非负正交分解实现快速多视图聚类

Fast Multi-View Clustering via Nonnegative and Orthogonal Factorization.

作者信息

Yang Ben, Zhang Xuetao, Nie Feiping, Wang Fei, Yu Weizhong, Wang Rong

出版信息

IEEE Trans Image Process. 2021;30:2575-2586. doi: 10.1109/TIP.2020.3045631. Epub 2021 Feb 5.

Abstract

The rapid growth of the number of data brings great challenges to clustering, especially the introduction of multi-view data, which collected from multiple sources or represented by multiple features, makes these challenges more arduous. How to clustering large-scale data efficiently has become the hottest topic of current large-scale clustering tasks. Although several accelerated multi-view methods have been proposed to improve the efficiency of clustering large-scale data, they still cannot be applied to some scenarios that require high efficiency because of the high computational complexity. To cope with the issue of high computational complexity of existing multi-view methods when dealing with large-scale data, a fast multi-view clustering model via nonnegative and orthogonal factorization (FMCNOF) is proposed in this paper. Instead of constraining the factor matrices to be nonnegative as traditional nonnegative and orthogonal factorization (NOF), we constrain a factor matrix of this model to be cluster indicator matrix which can assign cluster labels to data directly without extra post-processing step to extract cluster structures from the factor matrix. Meanwhile, the F-norm instead of the L2-norm is utilized on the FMCNOF model, which makes the model very easy to optimize. Furthermore, an efficient optimization algorithm is proposed to solve the FMCNOF model. Different from the traditional NOF optimization algorithm requiring dense matrix multiplications, our algorithm can divide the optimization problem into three decoupled small size subproblems that can be solved by much less matrix multiplications. Combined with the FMCNOF model and the corresponding fast optimization method, the efficiency of the clustering process can be significantly improved, and the computational complexity is nearly O(n) . Extensive experiments on various benchmark data sets validate our approach can greatly improve the efficiency when achieve acceptable performance.

摘要

数据量的快速增长给聚类带来了巨大挑战,尤其是多视图数据的引入,这些数据从多个来源收集或以多个特征表示,使得这些挑战更加艰巨。如何高效地对大规模数据进行聚类已成为当前大规模聚类任务中最热门的话题。尽管已经提出了几种加速多视图方法来提高大规模数据聚类的效率,但由于计算复杂度高,它们仍然无法应用于一些需要高效率的场景。为了解决现有多视图方法在处理大规模数据时计算复杂度高的问题,本文提出了一种基于非负正交分解的快速多视图聚类模型(FMCNOF)。与传统的非负正交分解(NOF)将因子矩阵约束为非负不同,我们将该模型的一个因子矩阵约束为聚类指示矩阵,该矩阵可以直接为数据分配聚类标签,而无需额外的后处理步骤从因子矩阵中提取聚类结构。同时,FMCNOF模型使用F范数而不是L2范数,这使得模型非常易于优化。此外,还提出了一种高效的优化算法来求解FMCNOF模型。与传统的需要密集矩阵乘法的NOF优化算法不同,我们的算法可以将优化问题分解为三个解耦的小尺寸子问题,这些子问题可以通过少得多的矩阵乘法来解决。结合FMCNOF模型和相应的快速优化方法,可以显著提高聚类过程的效率,计算复杂度几乎为O(n)。在各种基准数据集上进行的大量实验验证了我们的方法在实现可接受性能时可以大大提高效率。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验