Suppr超能文献

用于 3'-唾液乳糖合成的多酶级联反应的工程分析。

Engineering analysis of multienzyme cascade reactions for 3'-sialyllactose synthesis.

机构信息

Austrian Centre of Industrial Biotechnology, Graz, Austria.

Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Graz, Austria.

出版信息

Biotechnol Bioeng. 2021 Nov;118(11):4290-4304. doi: 10.1002/bit.27898. Epub 2021 Aug 2.

Abstract

Sialo-oligosaccharides are important products of emerging biotechnology for complex carbohydrates as nutritional ingredients. Cascade bio-catalysis is central to the development of sialo-oligosaccharide production systems, based on isolated enzymes or whole cells. Multienzyme transformations have been established for sialo-oligosaccharide synthesis from expedient substrates, but systematic engineering analysis for the optimization of such transformations is lacking. Here, we show a mathematical modeling-guided approach to 3'-sialyllactose (3SL) synthesis from N-acetyl- d-neuraminic acid (Neu5Ac) and lactose in the presence of cytidine 5'-triphosphate, via the reactions of cytidine 5'-monophosphate-Neu5Ac synthetase and α2,3-sialyltransferase. The Neu5Ac was synthesized in situ from N-acetyl- d-mannosamine using the reversible reaction with pyruvate by Neu5Ac lyase or the effectively irreversible reaction with phosphoenolpyruvate by Neu5Ac synthase. We show through comprehensive time-course study by experiment and modeling that, due to kinetic rather than thermodynamic advantages of the synthase reaction, the 3SL yield was increased (up to 75%; 10.4 g/L) and the initial productivity doubled (15 g/L/h), compared with synthesis based on the lyase reaction. We further show model-based optimization to minimize the total loading of protein (saving: up to 43%) while maintaining a suitable ratio of the individual enzyme activities to achieve 3SL target yield (61%-75%; 7-10 g/L) and overall productivity (3-5 g/L/h). Collectively, our results reveal the principal factors of enzyme cascade efficiency for 3SL synthesis and highlight the important role of engineering analysis to make multienzyme-catalyzed transformations fit for oligosaccharide production.

摘要

唾液酸寡糖是复杂碳水化合物作为营养成分的新兴生物技术的重要产物。基于分离酶或整个细胞的级联生物催化是唾液酸寡糖生产系统发展的核心。已经建立了用于从方便底物合成唾液酸寡糖的多酶转化,但缺乏对此类转化进行系统工程分析的优化。在这里,我们展示了一种数学建模指导的方法,用于在胞苷 5'-三磷酸存在下,通过胞苷 5'-单磷酸-Neu5Ac 合成酶和α2,3-唾液酸转移酶的反应,从 N-乙酰- d-神经氨酸(Neu5Ac)和乳糖合成 3'-唾液酸乳糖(3SL)。Neu5Ac 可以通过 Neu5Ac 裂解酶与丙酮酸的可逆反应或 Neu5Ac 合酶与磷酸烯醇丙酮酸的有效不可逆反应,在原位从 N-乙酰- d-甘露糖合成。我们通过实验和建模的全面时程研究表明,由于合成酶反应的动力学而不是热力学优势,与基于裂解酶的反应相比,3SL 的产率提高了(高达 75%;10.4 g/L),初始生产率提高了一倍(15 g/L/h)。我们进一步展示了基于模型的优化,以在保持适当的单个酶活性比的情况下,最小化总蛋白负荷(节省:高达 43%),从而达到 3SL 的目标产率(61%-75%;7-10 g/L)和整体生产率(3-5 g/L/h)。总的来说,我们的结果揭示了 3SL 合成中酶级联效率的主要因素,并强调了工程分析在使多酶催化转化适合寡糖生产中的重要作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6ef/9290085/09b7755f4619/BIT-118-4290-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验