Suppr超能文献

无针孔壳层隔离纳米粒子增强拉曼光谱用于无干扰探测电化学反应

Pinhole-Free Shell-Isolated Nanoparticle Enhanced Raman Spectroscopy for Interference-Free Probing of Electrochemical Reactions.

作者信息

Murugasenapathi N K, Jebakumari K A Esther, Mohamed S Jamal, Giribabu K, Palanisamy Tamilarasan

机构信息

Electrodics and Electrocatalysis Division (EEC), CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India.

Academy of Scientific and Innovative Research (AcSIR), CSIR-Central Electrochemical Research Institute (CECRI) Campus, Karaikudi 630003, Tamil Nadu, India.

出版信息

J Phys Chem Lett. 2021 Jul 29;12(29):7046-7052. doi: 10.1021/acs.jpclett.1c01768. Epub 2021 Jul 22.

Abstract

Investigating the behavior of analytes at the electrode surface is crucial in understanding the electrochemical and electrocatalytic reactions. Although Surface Enhanced Raman Scattering (SERS) is sensitive to minor chemical changes in the analyte, it is not widely used to study the reaction mechanisms on nonplasmonic surfaces because of the interference from plasmonic SERS substrates. In this study, we have investigated the redox reaction of Nile Blue A on a glassy carbon surface using pinhole-free silica-coated silver nanoparticles for Raman signal enhancement. The silver nanostructures were synthesized by a chemical reduction method, and the quality of the silica layer was confirmed using microscopic and electrochemical method. The spectroelectrochemical data reveals the catalytic interference from silver which considerably alters the native reaction mechanism. The pinhole-free silica layer prevents the hot electron transfer and yields an interference-free enhancement to the Raman signals.

摘要

研究分析物在电极表面的行为对于理解电化学和电催化反应至关重要。尽管表面增强拉曼散射(SERS)对分析物中的微小化学变化敏感,但由于等离子体SERS基底的干扰,它并未广泛用于研究非等离子体表面上的反应机制。在本研究中,我们使用无针孔二氧化硅包覆的银纳米颗粒来增强拉曼信号,研究了尼罗蓝A在玻碳表面的氧化还原反应。通过化学还原法合成了银纳米结构,并使用显微镜和电化学方法确认了二氧化硅层的质量。光谱电化学数据揭示了银的催化干扰,这大大改变了天然反应机制。无针孔二氧化硅层可防止热电子转移,并对拉曼信号产生无干扰增强。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验