Environmental Systems Graduate Group, Univ. of California, Merced, CA, 95343, USA.
Dep. of Life and Environmental Sciences, Univ. of California, Merced, CA, 95343, USA.
J Environ Qual. 2021 Sep;50(5):1084-1096. doi: 10.1002/jeq2.20270. Epub 2021 Aug 17.
Astudy was conducted in three agroecosystems in California (Sacramento, Solano, and Merced counties) that received biosolids applications for 20 yr. Management varied in application rates and frequencies, resulting in average cumulative amount of biosolids applied of 74 (Solano), 105 (Merced), and 359 (Sacramento) Mg biosolids ha , resulting in the addition of 26 (Solano), 36 (Merced), and 125 (Sacramento) Mg biosolids-C ha . Measurements included soil organic carbon (SOC) and total nitrogen (N) concentrations from 0 to 100 cm and microbial biomass C (MBC) and microbial biomass N (MBN) from 0 to 30 cm in biosolids-amended and control sites. Biosolids treatments had greater amounts of SOC and total N at all sites, and MBC and MBN were greatest at Sacramento and Solano. The largest increases in SOC were at the site that received the lowest cumulative loading rate of biosolids (Solano), where SOC content to 100 cm was 50% greater in amended soils (p < .001). Net changes in soil C stocks to 30 cm were 0.4 ± 0.1 (Solano), -0.04 ± 0.1 (Merced), and 0.3 ± 0.2 (Sacramento) Mg C ha yr . These values change when considering deeper soil depths (0-100 cm) to 0.5 ± 0.1 (Solano), 0.2 ± 0.2 (Merced), and 0.216 ± 0.2 (Sacramento) Mg C ha yr , reflecting differences in C stocks changes in surface and subsurface soils across sites. Rates of C storage per dry Mg of biosolids per year applied were 1 ± 0.2 (Solano), 0.5 ± 0.4 (Merced), and 0.04 ± 0.1 (Sacramento). Our results suggest that local controls on soil C stabilization are more important than amendment application amount at predicting climate benefits and that accounting for soil C changes below 30 cm can provide insight for sequestering C in agroecosystems.
这项研究在加利福尼亚州的三个农业生态系统(萨克拉门托、索拉诺和默塞德县)进行,这些地区在 20 年内都接受过生物固体的应用。管理在应用率和频率上有所不同,导致生物固体的平均累积施用量为 74(索拉诺)、105(默塞德)和 359(萨克拉门托)Mg 生物固体/公顷,从而使生物固体-C 的施用量增加了 26(索拉诺)、36(默塞德)和 125(萨克拉门托)Mg/公顷。测量结果包括 0 至 100 厘米深度的土壤有机碳(SOC)和总氮(N)浓度,以及 0 至 30 厘米深度的微生物生物量 C(MBC)和微生物生物量 N(MBN)。生物固体处理在所有地点都具有更高的 SOC 和总 N 含量,而 MBC 和 MBN 在萨克拉门托和索拉诺最大。在接受生物固体累积加载率最低的地点(索拉诺),SOC 的增加幅度最大,到 100 厘米处的土壤 SOC 含量增加了 50%(p<.001)。到 30 厘米处的土壤碳储量的净变化为 0.4±0.1(索拉诺)、-0.04±0.1(默塞德)和 0.3±0.2(萨克拉门托)Mg C/公顷·年。当考虑到更深的土壤深度(0-100 厘米)时,这些值变为 0.5±0.1(索拉诺)、0.2±0.2(默塞德)和 0.216±0.2(萨克拉门托)Mg C/公顷·年,反映了不同地点表层和次表层土壤中碳储量变化的差异。每年每干毫克生物固体应用的碳储存率为 1±0.2(索拉诺)、0.5±0.4(默塞德)和 0.04±0.1(萨克拉门托)。我们的研究结果表明,在预测气候效益方面,土壤碳稳定的本地控制因素比改良剂的应用量更为重要,而考虑到 30 厘米以下的土壤碳变化,可以为农业生态系统中的碳封存提供深入了解。