Suppr超能文献

优化新型可加工生物活性玻璃陶瓷的微观结构。

Optimizing the microstructure of a new machinable bioactive glass-ceramic.

机构信息

Center for Engineering, Modeling and Applied Social Sciences, Federal University of ABC, São Bernardo do Campo, SP, Brazil; Center for Information Technology Renato Archer, Campinas, SP, Brazil.

Vitreous Materials Laboratory, Materials Engineering Department, Federal University of São Carlos, São Carlos, SP, Brazil.

出版信息

J Mech Behav Biomed Mater. 2021 Oct;122:104695. doi: 10.1016/j.jmbbm.2021.104695. Epub 2021 Jul 13.

Abstract

OBJECTIVES

This study aimed to optimize the crystallization process and the microstructure of a new bioactive glass-ceramic (GC) previously developed by our research group to obtain machinable glass-ceramics.

METHODS

Differential scanning calorimetry (DSC) analyses were conducted to explore the characteristic temperatures and construct a semi-quantitative nucleation curve. The GC specimens were characterized by X-ray diffraction (XRD) and Rietveld refinement. Their brittleness index (B) and machinability were characterized and compared with IPS e.max-CAD®. Their Young's modulus, fracture toughness, and hardness were assessed.

RESULTS

We found that the maximum crystal nucleation rate temperature of this GC is ~470 °C. Treatments were designed based on the 1st DSC peak onset (570 °C), 1st peak offset (650 °C), and 2nd peak offset (705 °C) crystallization temperatures of lithium metasilicate (LS, LiSiO) and lithium disilicate (LS2, LiSiO). Rietveld refinement indicated an increase in LS2 and a reduction in LS and amorphous phase for increased temperatures and longer treatment times. Their B values indicate good machinability compared with that of the control group based on statistical analyses. As expected, lower levels of LS2 increase the machinability regardless of the rotation speed adopted, leading to a greater depth of cut and reduced Edge Chipping Damage Depth (ECDD).

CONCLUSION

This bioactive GC with optimized microstructure presents high machinability. For treatment temperatures above 570 °C, the number of elongated LS2 crystals increases and decreases the amorphous phase content, which reduce the machinability of the GC, and should therefore be avoided. The best results were obtained using heat treatment at 570 °C, which produces LS crystals embedded in a glassy matrix (67%) with small contents of secondary phases.

摘要

目的

本研究旨在优化一种新型生物活性玻璃陶瓷(GC)的结晶工艺和微观结构,以获得可加工的玻璃陶瓷。

方法

采用差示扫描量热法(DSC)分析来探究特征温度并构建半定量成核曲线。通过 X 射线衍射(XRD)和 Rietveld 精修对 GC 样品进行表征。对其脆性指数(B)和可加工性进行了表征,并与 IPS e.max-CAD®进行了比较。评估了它们的杨氏模量、断裂韧性和硬度。

结果

我们发现该 GC 的最大晶体成核速率温度约为 470°C。根据锂辉石(LS,LiSiO)和二锂硅(LS2,LiSiO)的第 1 个 DSC 峰起始(570°C)、第 1 个峰偏移(650°C)和第 2 个峰偏移(705°C)结晶温度设计了处理方案。Rietveld 精修表明,随着温度的升高和处理时间的延长,LS2 的含量增加,LS 和非晶相的含量减少。基于统计分析,其 B 值表明与对照组相比具有良好的可加工性。正如预期的那样,无论采用的转速如何,LS2 含量的降低都会提高可加工性,从而增加切削深度并降低边缘崩边损伤深度(ECDD)。

结论

这种优化微观结构的生物活性 GC 具有较高的可加工性。对于处理温度高于 570°C 的情况,伸长的 LS2 晶体数量增加且非晶相含量减少,从而降低了 GC 的可加工性,因此应避免使用这种温度。在 570°C 下进行热处理时可获得最佳结果,此时生成嵌入玻璃基质(67%)中的 LS 晶体,且第二相的含量较小。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验