Suppr超能文献

在初级保健 NAFLD 队列中识别纤维化风险患者。

Identifying Patients at Risk for Fibrosis in a Primary Care NAFLD Cohort.

机构信息

Departments of Medicine.

Public Health Sciences, Medical University of South Carolina, Charleston, SC.

出版信息

J Clin Gastroenterol. 2023 Jan 1;57(1):89-96. doi: 10.1097/MCG.0000000000001585.

Abstract

GOALS AND BACKGROUND

Using natural language processing to create a nonalcoholic fatty liver disease (NAFLD) cohort in primary care, we assessed advanced fibrosis risk with the Fibrosis-4 Index (FIB-4) and NAFLD Fibrosis Score (NFS) and evaluated risk score agreement.

MATERIALS AND METHODS

In this retrospective study of adults with radiographic evidence of hepatic steatosis, we calculated patient-level FIB-4 and NFS scores and categorized them by fibrosis risk. Risk category and risk score agreement was analyzed using weighted κ, Pearson correlation, and Bland-Altman analysis. A multinomial logistic regression model evaluated associations between clinical variables and discrepant FIB-4 and NFS results.

RESULTS

Of the 767 patient cohorts, 71% had a FIB-4 or NFS score in the indeterminate-risk or high-risk category for fibrosis. Risk categories disagreed in 43%, and scores would have resulted in different clinical decisions in 30% of the sample. The weighted κ statistic for risk category agreement was 0.41 [95% confidence interval (CI): 0.36-0.46] and the Pearson correlation coefficient for log FIB-4 and NFS was 0.66 (95% CI: 0.62-0.70). The multinomial logistic regression analysis identified black race (odds ratio=2.64, 95% CI: 1.84-3.78) and hemoglobin A1c (odds ratio=1.37, 95% CI: 1.23-1.52) with higher odds of having an NFS risk category exceeding FIB-4.

CONCLUSIONS

In a primary care NAFLD cohort, many patients had elevated FIB-4 and NFS risk scores and these risk categories were often in disagreement. The choice between FIB-4 and NFS for fibrosis risk assessment can impact clinical decision-making and may contribute to disparities of care.

摘要

目的和背景

使用自然语言处理在初级保健中创建非酒精性脂肪性肝病 (NAFLD) 队列,我们使用纤维化 4 指数 (FIB-4) 和 NAFLD 纤维化评分 (NFS) 评估了晚期纤维化风险,并评估了风险评分的一致性。

材料和方法

在这项对有放射影像学证据的肝脂肪变性的成年人进行的回顾性研究中,我们计算了患者的 FIB-4 和 NFS 评分,并根据纤维化风险对其进行了分类。使用加权 κ、Pearson 相关系数和 Bland-Altman 分析评估了风险类别和风险评分的一致性。多变量逻辑回归模型评估了临床变量与 FIB-4 和 NFS 结果不一致之间的关联。

结果

在 767 例患者队列中,71%的患者 FIB-4 或 NFS 评分处于纤维化不确定风险或高风险类别。43%的风险类别存在差异,30%的样本中评分结果将导致不同的临床决策。风险类别一致性的加权 κ 统计量为 0.41[95%置信区间 (CI):0.36-0.46],log FIB-4 和 NFS 的 Pearson 相关系数为 0.66(95%CI:0.62-0.70)。多变量逻辑回归分析确定了黑人种族 (比值比=2.64,95%CI:1.84-3.78) 和糖化血红蛋白 (比值比=1.37,95%CI:1.23-1.52) 与 NFS 风险类别高于 FIB-4 的可能性更高。

结论

在初级保健 NAFLD 队列中,许多患者的 FIB-4 和 NFS 风险评分较高,且这些风险类别通常存在差异。纤维化风险评估中 FIB-4 和 NFS 的选择会影响临床决策,并可能导致护理差异。

相似文献

9

引用本文的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验